Project description
ICT for energy-efficient buildings and spaces of public use
Underground transportation systems are big energy consumers (e.g. 63,1 millions of kWh / year), and have significant impacts on energy consumption at a regional scale. One third of the networks' energy is required for operating the subsystems of metro stations and surroundings, such as ventilation, vertical transportation and lightning. Although a relatively small percentage of energy can be saved with an optimal management of these subsystems, a large energy saving in absolute terms can be obtained. The objective of SEAM4US is to develop advanced technologies for optimal and scalable control of metro stations that will produce a 5% saving in non-traction electricity consumption in one year, which is equivalent to the electricity consumed in more than 700 households. The project's main outcomes will be the creation of systems for optimized integrated energy management, and the development of a decision support system to drive mid-term investments. SEAM4US will integrate additional energy metering and sensor-actuator networks with the existing systems (e.g. surveillance, passenger information and train scheduling), by means of middleware as abstraction layer, to acquire grounded user, environmental and scheduling data. The data set will update and enable a set of adaptive energy consumption and environmental models to proactively and optimally control the metro stations. The consortium consists of a large metro network operator, TMB; a major player in energy-efficient system management sector, COFELY; building and environmental physics and construction experts UNIVPM and UPC, respectively; R&D experts in middleware, FhG FIT and VTT; R&D experts in user and agent-based scheduling modeling, ALMENDE and UNIK; system integrator, CNET.
Fields of science
Call for proposal
FP7-2011-NMP-ENV-ENERGY-ICT-EeB
See other projects for this call
Funding Scheme
CP - Collaborative project (generic)Coordinator
00144 Roma
Italy