Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-06-18

Coupled and Competing Instabilities in Complex Oxides

Objetivo

"The CCICO project will build a comprehensive understanding of how proximity to previously unexplored combinations of instabilities, as well as previously unidentified types of ordering, manifest in novel behaviors, and will develop design guidelines for practical realization of new materials with such behaviors. Taking transition-metal oxides as our model systems, we will develop and apply first-principles electronic structure theory methods to explore an extensive array of new combinations of orderings, with a focus on interactions between the electronic -- Jahn-Teller, orbital and charge -- and structural -- rotations, ferroelectric and other distortions -- degrees of freedom. Our goal is to spawn a new field of study based on a novel combination of orderings in the same way that the field of multiferroics was jump-started ten years ago by our work understanding the coexistence of ferroelectricity and magnetism. Conversely, we will apply the computational tools developed in our history of studying multiferroics, particularly descriptions of proximity to structural and magnetic phase transitions, to characterizing observed behaviors such as exotic superconductivity in existing materials. In the process we will search for and characterize elusive or poorly characterized forms of order in solids, with a focus on ferrotoroidicity and emergent local dipoles. A final application is to create designer materials for solid-state experiments relevant to high-energy physics and cosmology. Promising compounds that are amenable to bulk synthesis will be made in our new oxide single-crystal growth laboratory; materials that require thin-film routes will be pursued in collaboration with colleagues."

Convocatoria de propuestas

ERC-2011-ADG_20110209
Consulte otros proyectos de esta convocatoria

Régimen de financiación

ERC-AG - ERC Advanced Grant

Institución de acogida

EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Aportación de la UE
€ 1 999 999,60
Dirección
Raemistrasse 101
8092 Zuerich
Suiza

Ver en el mapa

Región
Schweiz/Suisse/Svizzera Zürich Zürich
Tipo de actividad
Higher or Secondary Education Establishments
Contacto administrativo
Nicola Ann Spaldin (Prof.)
Investigador principal
Nicola Ann Spaldin (Prof.)
Enlaces
Coste total
Sin datos

Beneficiarios (1)