Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-29

Transition to turbulence in ventilated double glazing

Objective

"Pioneering numerical techniques, that have not been employed before concurrently, are proposed in this project. They can capture the transition to turbulence of shear flow and in the process offer the capability of proposing methods for the state of the art control of such transitions. The proposed methods can enhance the calculation of fluid flow by identifying the hierarchical bifurcation of the evolving states and can be captured in an engineering orientated software (computational) tool that will aid the real life implementation of these, otherwise, generalised but tried mathematical techniques. In this sense the predictive power of the underlying mathematical modelling techniques, upon which the engineering tool will be crucially dependent, will display their true potential. The novel methods can be used to pinpoint the transition of the flow from its laminar (basic) state to its fully developed (turbulent) state with pinpoint accuracy and for arbitrary geometrical configurations. The ensuing stability analysis will be a unique attribute of this mathematically engineered software.
Our software, in brief, that unifies the above mentioned techniques, will be able to oversee the development of the fluid flow throughout its evolution, from birth to turbulent arrival. It is the ultimate aim of this set of programmes to apply the resulting software to complex configurations applicable to a variety of every day engineering configurations. Simple geometries will be considered at first to act as benchmarks and common ground for the two different state of the art software avenues at our disposal: the proprietary code developed at Aston University and a commercially available CFD code. We intend to use the results of our studies for the design and industrial implementation of a new concept that is at the heart of European energy, environment and socioeconomic focus: ventilated double glazing."

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2011-IIF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IIF - International Incoming Fellowships (IIF)

Coordinator

ASTON UNIVERSITY
EU contribution
€ 278 807,40
Address
ASTON TRIANGLE
B4 7ET Birmingham
United Kingdom

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0