Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-27

Causes and consequences of mechanisms underlying genome size obesity

Objective

There are compelling reasons to believe that many underlying genomic, cellular, developmental and ecological processes are genome-size dependent. Plants with large genomes are at greater risk of extinction, less adaptable to living in polluted soils, and less able to tolerate extreme environmental conditions, clearly demonstrating that genome size has ecological consequences which shape the distribution and persistence of biodiversity. This proposal addresses the mechanisms behind the dynamics of genome expansion, which in the plant genus Fritillaria includes species with giant (obese) genomes, at least 150-fold larger than model species such as Arabidopsis thaliana. We are profoundly ignorant of how their genomes expand. Until recently, the sheer scale of the task of understanding genome obesity was too daunting to address. But now that impediment is largely overcome thanks to the astonishing advances in next generation sequencing methods (NGS). This proposal exploits NGS along with complementary methodologies that survey entire genomes to provide insights into the evolutionary dynamics of genome obesity. We will test hypotheses that examine whether there are unusual or novel epigenetic events (i.e. siRNA, cytosine methylation, histone modifications) that contribute to the evolution of genome obesity. Lu Ma brings expertise in cytogenetics and immunocytochemistry, a skill set he will enhance during the Fellowship through the training received in the Leitch Laboratory. This will considerably enhance Lu Ma’s career prospects since he will emerge highly proficient in skills needed to analyse NGS data, an area where there is currently an acute shortage of trained scientists, despite the importance of NGS approaches in the future of modern biosciences. Overall, the Fellowship will enhance collaboration between European laboratories and lead to an increased understanding of how genome obesity impacts on the biodiversity we see around us.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2011-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

QUEEN MARY UNIVERSITY OF LONDON
EU contribution
€ 209 033,40
Address
327 MILE END ROAD
E1 4NS LONDON
United Kingdom

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0