Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Stable Unsaturated Silicon Clusters as Nucleation Sites in Solution and the Gas Phase

Objective

Amorphous silicon (a-Si) is an important industrial material. It is used widely in electronic devices such as thin-film transistors (TFTs). Solar energy generation also relies heavily on a-Si for mass produced photovoltaic cells. Amorphous silicon is prepared via chemical vapour deposition (CVD) from silanes (e.g. SiH4), in which small, unsaturated silicon clusters are short-lived gas-phase intermediates. Significantly, such clusters are incorporated into the bulk a-Si and are critical in determining fundamental properties of the material, such as optical and electronic band-gaps. Crucial details of structure and bonding in these clusters are elusive.

We propose to build on the emerging chemistry of isolable, stable unsaturated silicon clusters. Using a novel systematic synthetic approach, we will prepare stable unsaturated silicon cluster compounds as models for the unsaturated clusters present in CVD processes. We will exploit the reactivity of these compounds to use them as solution-phase nucleation sites for cluster expansion. The electronic and photo-physical characteristics of these compounds will be investigated, shedding light on the analytically elusive clusters present in a-Si.

We will use unsaturated silicon clusters as gas-phase nucleation sites for the CVD of a-Si (Cluster Assisted Silicon CVD - CASi-CVD). By depositing a-Si from gas phase mixtures of silanes and our novel clusters we will be able to control the concentration and properties of the residual unsaturated clusters in the a-Si produced. Improved control over these parameters is directly relevant to industry: it would allow improved materials for semi-conducting electronics and solar-energy generation. Such advances would increase the global competitiveness of the EU.

The fellow will gain high quality training in main group chemistry and materials chemistry (deposition of a-Si) as well as complementary skills training that will equip the fellow for a top level independent research career.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2011-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

UNIVERSITAT DES SAARLANDES
EU contribution
€ 174 475,20
Address
CAMPUS
66123 Saarbrucken
Germany

See on map

Region
Saarland Saarland Regionalverband Saarbrücken
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0