Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Content archived on 2024-05-27

Nanowired Scaffolds for Cardiac Tissue Engineering

Objective

Ischemic heart disease (IHD) is the most common cause of death in the Western world, accounting for more than 741.000 deaths each year in the European Union with yearly costs in excess of € 45 billion. Myocardial infarction (heart attack; MI) captures a significant segment of IHD population and is associated with sudden death as well significant morbidity and mortality. Currently the only cure for end-stage heart failure is cardiac transplantation. As cardiac donors are scarce, there is an urgent need to develop new strategies for regeneration. One experimental approach to treat defected organs is tissue engineering. Engineered cardiac patches to replace scar tissue after MI are produced by seeding cardiac cells within 3D biomaterials. However, success of this approach can be jeopardized by a lack of supporting microenvironment for the organization of a thick tissue and lack of electrical conductivity within the construct, both leading to impaired electrical signal propagation. Another limitation is the lack of an appropriate cell source. In the current proposal we first aim to engineer a 3D microenvironment mimicking the natural ECM of the myocardium. This synthetic matrix will be embedded with gold nanowires to increase electrical signal propagation between cardiac cell bundles. In the second step the ability of this unique microenvironment to support the culture and organization of human cardiac stem cells to a functional mature tissue will be explored. Finally, we will investigate the potential of the nanowired cardiac patch to improve the infarcted heart function. The proposed study has a potential to present a breakthrough in tissue engineering, and could help develop conductive cardiac patches to replace scar tissue after MI and repair congenital heart diseases. Moreover, the approach proposed here could even allow an entirely new strategy to repairing damaged cardiac conduction systems.

Call for proposal

FP7-PEOPLE-2011-CIG
See other projects for this call

Coordinator

TEL AVIV UNIVERSITY
EU contribution
€ 100 000,00
Address
RAMAT AVIV
69978 Tel Aviv
Israel

See on map

Activity type
Higher or Secondary Education Establishments
Administrative Contact
Lea Pais (Ms.)
Links
Total cost
No data