Skip to main content

Large-Scale Computational Screening and Design of Highly-ordered pi-conjugated Molecular Precursors to Organic Electronic

Objective

The field of electronics has been a veritable powerhouse of the economy, driving technological breakthroughs that affect all aspects of everyday life. Aside from silicon, there has been growing interest in developing a novel generation of electronic devices based on pi-conjugated polymers and oligomers. While their goal is not to exceed the performance of silicon technologies, they could enable far reduced fabrication costs as well as completely new functionalities (e.g. mechanical flexibility, transparency, impact resistance). The performance of these organic devices is greatly dependent on the organization and electronic structures of π-conjugated polymer chains at the molecular level. To achieve full potential, technological developments require fine-tuning of the relative orientation/position of the pi-conjugated moieties, which provide a practical means to enhance electronic properties. The discovery pace of novel materials can be accelerated considerably by the development of efficient computational schemes. This requires an integrated approach, based on which the structural, electronic, and charge transport properties of novel molecular candidates are evaluated computationally and predictions benchmarked by proof of principle experiments. This research program aims at developing a threefold computational screening strategy enabling the design of an emerging class of molecular precursors based on the insertion of π-conjugated molecules into self-assembled hydrogen bond aggregator segments (e.g. oligopeptide, nucleotide and carbohydrate motifs). These bioinspired functionalized pi-conjugated systems offer the highly desirable prospect of achieving ordered suprastructures abundant in nature with the enhanced functionalities only observed in synthetic polymers. A more holistic objective is to definitively establish the relationship between highly ordered architectures and the nature of the electronic interactions and charge transfer properties in the assemblies.

Field of science

  • /natural sciences/chemical sciences/polymer science
  • /natural sciences/chemical sciences/inorganic chemistry/inorganic compounds

Call for proposal

ERC-2012-StG_20111012
See other projects for this call

Funding Scheme

ERC-SG - ERC Starting Grant

Host institution

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Address
Batiment Ce 3316 Station 1
1015 Lausanne
Switzerland
Activity type
Higher or Secondary Education Establishments
EU contribution
€ 1 482 240
Principal investigator
Anne-Clemence Corminboeuf (Prof.)
Administrative Contact
Caroline Vandevyver (Ms.)

Beneficiaries (1)

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Switzerland
EU contribution
€ 1 482 240
Address
Batiment Ce 3316 Station 1
1015 Lausanne
Activity type
Higher or Secondary Education Establishments
Principal investigator
Anne-Clemence Corminboeuf (Prof.)
Administrative Contact
Caroline Vandevyver (Ms.)