CORDIS - Forschungsergebnisse der EU
CORDIS

Large-Scale Computational Screening and Design of Highly-ordered pi-conjugated Molecular Precursors to Organic Electronic

Ziel

The field of electronics has been a veritable powerhouse of the economy, driving technological breakthroughs that affect all aspects of everyday life. Aside from silicon, there has been growing interest in developing a novel generation of electronic devices based on pi-conjugated polymers and oligomers. While their goal is not to exceed the performance of silicon technologies, they could enable far reduced fabrication costs as well as completely new functionalities (e.g. mechanical flexibility, transparency, impact resistance). The performance of these organic devices is greatly dependent on the organization and electronic structures of π-conjugated polymer chains at the molecular level. To achieve full potential, technological developments require fine-tuning of the relative orientation/position of the pi-conjugated moieties, which provide a practical means to enhance electronic properties. The discovery pace of novel materials can be accelerated considerably by the development of efficient computational schemes. This requires an integrated approach, based on which the structural, electronic, and charge transport properties of novel molecular candidates are evaluated computationally and predictions benchmarked by proof of principle experiments. This research program aims at developing a threefold computational screening strategy enabling the design of an emerging class of molecular precursors based on the insertion of π-conjugated molecules into self-assembled hydrogen bond aggregator segments (e.g. oligopeptide, nucleotide and carbohydrate motifs). These bioinspired functionalized pi-conjugated systems offer the highly desirable prospect of achieving ordered suprastructures abundant in nature with the enhanced functionalities only observed in synthetic polymers. A more holistic objective is to definitively establish the relationship between highly ordered architectures and the nature of the electronic interactions and charge transfer properties in the assemblies.

Aufforderung zur Vorschlagseinreichung

ERC-2012-StG_20111012
Andere Projekte für diesen Aufruf anzeigen

Gastgebende Einrichtung

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
EU-Beitrag
€ 1 482 240,00
Adresse
BATIMENT CE 3316 STATION 1
1015 Lausanne
Schweiz

Auf der Karte ansehen

Region
Schweiz/Suisse/Svizzera Région lémanique Vaud
Aktivitätstyp
Higher or Secondary Education Establishments
Hauptforscher
Anne-Clemence Corminboeuf (Prof.)
Kontakt Verwaltung
Caroline Vandevyver (Ms.)
Links
Gesamtkosten
Keine Daten

Begünstigte (1)