Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Contenido archivado el 2024-06-18

Hybrid Quantum Nano-Optomechanics

Objetivo

The chief endeavor of the project is to develop, investigate and exploit systems associating nanoscale mechanical resonators with single quantum objects. Such combinations belong in the category of so-called “hybrid nanomechanical systems” which constitutes a rapidly expanding field in modern quantum- and nanophysics.
The benefit of exploring hybrid systems is manifold. From a practical point of view, due to their size, nanoresonators are extremely sensitive to external forces. If associated with a high resolution optical sensor through which the nanoresonator can be non-invasively probed and manipulated, the hybrid system holds promise to act as an ultrasensitive force probe. On a more fundamental level, unexplored quantum regimes become within reach, where the interface between quantum objects and mechanical systems can be thoroughly investigated. From a conceptual point of view, such experiments are of paramount importance as they could reveal the quantum behavior of macroscopic objects.
To accommodate these ideas, I propose to develop and investigate two types of hybrid systems. The first one consists of a single nitrogen-vacancy (NV) defect hosted in a diamond nanocrystal, positioned at the extremity of a nanowire. My team and I recently demonstrated magnetic coupling of the NV spin to the resonator position and thereby evidenced the feasibility of realizing such a quantum to mechanical interface. This novel system can readily be improved to meet the severe requirements of the quantum opto-mechanical experiments envisioned in this project. The second approach also exploits a NV centre, but this time as an integrated part of a diamond resonator. This monolithic system potentially offers an unprecedented coupling, a supreme overall stability, and NV centres with improved characteristics, together expanding the scope of conceivable experiments.

Convocatoria de propuestas

ERC-2012-StG_20111012
Consulte otros proyectos de esta convocatoria

Régimen de financiación

ERC-SG - ERC Starting Grant

Institución de acogida

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Aportación de la UE
€ 1 792 140,00
Dirección
RUE MICHEL ANGE 3
75794 Paris
Francia

Ver en el mapa

Región
Ile-de-France Ile-de-France Paris
Tipo de actividad
Research Organisations
Contacto administrativo
Christophe Muller (Prof.)
Investigador principal
Olivier Arcizet (Mr.)
Enlaces
Coste total
Sin datos

Beneficiarios (1)