European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-05-28

Organic Thermoelectric Generators

Objetivo

At the moment, there is no viable technology to produce electricity from natural heat sources (T<200°C) and from 50% of the waste heat (electricity production, industries, buildings and transports) stored in large volume of warm fluids (T<200°C). To extract heat from large volumes of fluids, the thermoelectric generators would need to cover large areas in new designed heat exchangers. To develop into a viable technology platform, thermoelectric devices must be fabricated on large areas via low-cost processes. But no thermoelectric material exists for this purpose.
Recently, the applicant has discovered that the low-cost conducting polymer poly(ethylene dioxythiophene) possesses a figure-of-merit ZT=0.25 at room temperature. Conducting polymers can be processed from solution, they are flexible and possess an intrinsic low thermal conductivity. This combination of unique properties motivate further investigations to reveal the true potential of organic materials for thermoelectric applications: this is the essence of this project.
My goal is to organize an interdisciplinary team of researchers focused on the characterization, understanding, design and fabrication of p- and n-doped organic-based thermoelectric materials; and the demonstration of those materials in organic thermoelectric generators (OTEGs). Firstly, we will create the first generation of efficient organic thermoelectric materials with ZT> 0.8 at room temperature: (i) by optimizing not only the power factor but also the thermal conductivity; (ii) by demonstrating that a large power factor is obtained in inorganic-organic nanocomposites. Secondly, we will optimize thermoelectrochemical cells by considering various types of electrolytes.
The research activities proposed are at the cutting edge in material sciences and involve chemical synthesis, interface studies, thermal physics, electrical, electrochemical and structural characterization, device physics. The project is held at Linköping University holding a world leading research in polymer electronics.

Convocatoria de propuestas

ERC-2012-StG_20111012
Consulte otros proyectos de esta convocatoria

Régimen de financiación

ERC-SG - ERC Starting Grant

Institución de acogida

Linköping University
Aportación de la UE
€ 1 453 689,60
Dirección
CAMPUS VALLA
581 83 Linköping
Suecia

Ver en el mapa

Tipo de actividad
Higher or Secondary Education Establishments
Contacto administrativo
Michael Lögdlund (Dr.)
Investigador principal
Xavier Dominique Etienne Crispin (Dr.)
Enlaces
Coste total
Sin datos

Beneficiarios (1)