Skip to main content

Nature-Inspired Gold Catalytic Tools

Objective

The study of biologically relevant processes heavily relays on “small molecules”. Thus, the demand for novel chemical probes is of highest importance not only for chemistry, but also for closely related disciplines such as biology, medicine or material science. As the construction of complex molecular architectures from chemical building blocks still remains a far-from-routine task, the development of methodologies to increase the control over chemical reactivity and achieve molecular complexity with higher levels of efficiency has become one of the frontier challenges of chemistry in the 21st century.
NIGOCAT aims to substantially contribute towards this goal. The general objective of this proposal is the design, synthesis and application in catalysis of novel, nature-inspired gold(I) and gold(III)-catalytic tools able to mimic nature´s efficiency and exquisite taste for the synthesis and stereoselective functionalization of “small molecules”. The proposed research tackles three main challenges faced by current synthetic methods: 1. Efficient generation of structural complexity; 2. Selective C-H bond functionalization; 3. High levels of stereocontrol in asymmetric catalysis.
We aim to streamline the construction of molecular complexity based on modular, unprecedented multi-center gold factories. Our hypothesis is that the assembly of different reactive sites within a single catalyst will provide an increased level of efficiency in gold-orchestrated catalytic cascades from simple starting materials, thus mimicking the way nature assembles its complex primary metabolites. Second, we aim to tackle the flexible, selective functionalization of C-H bonds using novel metaloenzyme-inspired ligands on gold. Third, we aim to develop novel gold peptide-based catalytic systems as general tools able to provide high levels of absolute stereocontrol in gold catalysis.

Field of science

  • /natural sciences/chemical sciences/inorganic chemistry/inorganic compounds

Call for proposal

ERC-2012-StG_20111012
See other projects for this call

Funding Scheme

ERC-SG - ERC Starting Grant

Host institution

University of Zurich
Address
Ramistrasse 71
8006 Zurich
Switzerland
Activity type
Higher or Secondary Education Establishments
EU contribution
€ 1 500 000
Principal investigator
Cristina Nevado (Prof.)
Administrative Contact
Cristina Nevado (Prof.)

Beneficiaries (1)

University of Zurich
Switzerland
EU contribution
€ 1 500 000
Address
Ramistrasse 71
8006 Zurich
Activity type
Higher or Secondary Education Establishments
Principal investigator
Cristina Nevado (Prof.)
Administrative Contact
Cristina Nevado (Prof.)