Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-06-18

Visual Culture for Image Understanding

Objetivo

The goal of computer vision is to interpret complex visual scenes, by recognizing objects and understanding their spatial arrangement within the scene. Achieving this involves learning
categories from annotated training images. In the current paradigm, each category is learned starting from scratch without any previous knowledge. This is in contrast with how humans learn, who accumulate knowledge about visual concepts which they reuse to help learning new concepts.
The goal of this project is to develop a new paradigm where computers learn visual concepts on top of what they already know, as opposed to learning every concept from scratch. We propose to progressively learn a vast body of visual knowledge, coined Visual Culture, from a variety of available datasets. We will acquire models of the appearance and shape of categories in general, models of specific categories, and models of their spatial organization into scenes. We will start learning from datasets with high degree of supervision and then gradually move to datasets with lower degrees. At each stage we will employ the current body of knowledge to support learning with less supervision. After acquiring Visual Culture from existing datasets, the machine will be ready to learn further with little or no supervision, for example from the Internet. Visual Culture is related to ideas in other fields, but no similar endeavor was undertaken in Computer Vision yet.
This project will make an important step toward mastering the complexity of the visual world, by advancing the state-of-the-art in terms of the number of categories that can be localized, and in
the variability covered by each model. Moreover, Visual Culture is more than a mere collection of isolated categories, it is is a web of object, background, and scene models connected by spatial relations and sharing visual properties. This will bring us closer to image understanding, the automatic interpretation of complex novel images.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

ERC-2012-StG_20111012
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

ERC-SG - ERC Starting Grant

Institución de acogida

THE UNIVERSITY OF EDINBURGH
Aportación de la UE
€ 1 481 516,00
Dirección
OLD COLLEGE, SOUTH BRIDGE
EH8 9YL Edinburgh
Reino Unido

Ver en el mapa

Región
Scotland Eastern Scotland Edinburgh
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos

Beneficiarios (1)

Mi folleto 0 0