Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Bioactivated hierarchical hydrogels as zonal implants for articular cartilage regeneration

Objective

Degeneration of cartilage is a major cause of chronic pain, lost mobility and reduced quality of life for millions of European citizens. From a clinical point of view treatment to achieve cartilage regeneration (hyaline) and not only repair (fibrous) remains a great challenge. No clinical therapy is available that leads to healing of cartilage defects.
Current cartilage implants cannot establish the hierarchical tissue organisation that appears critical for normal cartilage function. We hypothesise that a biomimetic zonal organisation is critical for implants to achieve cartilage regeneration.
HydroZONES represents an interdisciplinary consortium that adopts a strategy to regenerate, rather than repair, articular cartilage based on the tissues zonal structure and function.
HydroZONES will use advanced bioprinting technology for fabrication of 3D biofunctional hydrogel constructs, eventually mechanically reinforced by degradable polymer scaffolds, as biomimetic reconstitution of the zonal organisation of natural cartilage. Constructs will be optimized for cell-free application and also for combination with chrondrogenic cells (chondrocytes and/or MSC). Stringent in vitro and long term in vivo testing of the constructs will be employed that will yield a new clinical standard for pre-clinical testing.
Cutting edge 3D tissue models and bioreactor technology will be used together with in silico modelling to develop a predictive in vitro assay and test system that will be validated against the in vivo data.
Installation of a quality and regulatory affair management system, GMP production, accredited in vitro testing and involvement of clinical partners and companies with experience in clinical trials ensures that the best performing construct will be brought into an optimal position for entering clinical trials at project end. HydroZONES will thus advance the European Union as world leader in the field of joint cartilage regeneration.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-NMP-2012-LARGE-6
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP-IP - Large-scale integrating project

Coordinator

UNIVERSITAETSKLINIKUM WUERZBURG - KLINIKUM DER BAYERISCHEN JULIUS-MAXIMILIANS-UNIVERSITAT
EU contribution
€ 2 609 470,00
Address
JOSEF-SCHNEIDER-STRASSE 2
97080 Wurzburg
Germany

See on map

Region
Bayern Unterfranken Würzburg, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (16)

My booklet 0 0