European Commission logo
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

IMPROVING THE AIRCRAFT SAFETY BY SELF HEALING STRUCTURE AND PROTECTING NANOFILLERS

Objective

Inspection and Maintenance are important aspects when considering the availability of aircraft for revenue flights. Modern airframe design is exploiting new exciting developments in materials and structures to construct ever more efficient air vehicle able to enable ‘smart’ maintenance including self-repair capabilities. The improvement in the aircraft safety by self-healing structures and protecting nanofillers is a revolutionary approach that should lead to the creation of novel generation of multifunctional aircraft materials with strongly desired properties and design flexibilities. In recent years, the development of new nanostructured materials has enabled an evolving shift from single purpose materials to multifunctional systems that can provide greater value than the base materials alone; these materials possess attributes beyond the basic strength and stiffness that typically drive the science and engineering of the material for structural systems. Structural materials can be designed to have integrated electrical, electromagnetic, flame resistance, regenerative ability and possibly other functionalities that work in synergy to provide advantages that reach beyond that of the sum of the individual capabilities. Materials of this kind have tremendous potential to impact future structural performance by reducing size, weight, cost, power consumption and complexity while improving efficiency, safety and versatility. Actually, also a very advanced design of an aircraft has to take required inspection intervals into account. An aircraft with inherent protective and smart abilities could help to significantly extend the inspection intervals, thereby increasing aircraft availability. The main objective of this EASN endorsed proposal is to develop and apply a multifunctional autonomically healing composite for aeronautic applications. The multifunctional composite systems will be developed with the aim of overcoming serious drawbacks of the composite materials.

Call for proposal

FP7-AAT-2012-RTD-1
See other projects for this call

Coordinator

UNIVERSITA DEGLI STUDI DI SALERNO
EU contribution
€ 533 292,00
Address
VIA GIOVANNI PAOLO II 132
84084 Fisciano Sa
Italy

See on map

Region
Sud Campania Salerno
Activity type
Higher or Secondary Education Establishments
Administrative Contact
Liberata Guadagno (Prof.)
Links
Total cost
No data

Participants (9)