Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

MId- to NEaR infrared spectroscopy for improVed medical diAgnostics

Project description


Core and disruptive photonic technologies
The MINERVA project will take advantage of several new breakthroughs in photonic technology to develop a new mid-IR technology platform and processes for early detection of cancer

In recent years it has become clear that mid-IR imaging spectroscopy has the potential to open a new chapter in bio-medical imaging and offers an effective tool for early cancer diagnosis and improved survival rates. Rather than a search for "cancer marker" absorption peaks, great progress has been made by analysing the entire bio-molecular mid-IR spectral signature using automated algorithms. However, the lack of suitable sources, detectors and components has restricted the technology to one of academic interest, based on weak thermal sources, low power lasers or synchrotron research tools.For the first time the photonic technology is in place to develop a new mid-IR technology platform on which entirely novel supercontinuum sources (c. 1000x brighter than thermal sources) covering the whole range from 1.5 to 12 µm may be built:-Low loss robust chalcogenide fibres for fibre lasers, supercontinuum generation and delivery -Fibre end caps, splicing and fusion technology for soft glass fibres -Crystal technology and novel designs for mid-IR AO modulators based on calomel -Flexible fast AO driver technology to enable high speed HSI acquisition -Low cost T2SL FPA detectors with performance matching state-of-the-art MSL devices -2.9 µm Er:ZBLAN and 4.5 µm Pr-doped chalcogenide fibre laser pumps -Robust designs for a range of mid-IR SCG sources: a) 1.5-4.5 µm from ZBLAN fibre b) 1.5-5.5 µm from InF3 fibre c) 3-9 µm from 2.9 µm pumped PCF chalcogenide fibre d) 4-12 µm from 4.5 µm pumped step-index chalcogenide fibre.Two specific high impact applications will be addressed: high volume pathology screening (i.e. automated microscope-based examination of samples) and in vivo, remote, real-time skin surface examination (i.e. non-invasive investigation of suspected skin cancer).This project will open the mid-IR to further exploitation, and the technology developed will be transferable to a huge range of applications both in bio-photonics and in wider industry.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-ICT-2011-8
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP - Collaborative project (generic)

Coordinator

GOOCH & HOUSEGO (UK) LIMITED
EU contribution
€ 890 788,00
Address
DOWLISH FORD
TA19 0PF ILMINSTER
United Kingdom

See on map

Region
South West (England) Dorset and Somerset Somerset
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (13)

My booklet 0 0