European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-05-28

Magnetohydrodynamic Wave Diagnostics of the Solar Atmosphere in the Era of Transformative High-Resolution Observations

Objetivo

Funding is sought for a 5-year project supporting two postdoctoral research assistants and two 4-year PhD studentships to carry out a research programme on qualitative advances of our understanding of basic physical processes operating in the atmosphere of the Sun. This will be accomplished by the use of the unprecedented high-resolution data obtained with the new generation of solar space missions, which allow us to fully implement the novel technique for plasma diagnostics, based upon magnetohydrodynamic waves. The project aims to reveal the mechanisms behind the most intriguing and disturbing solar phenomena: the heating of the corona and the physics of solar flares and mass ejections. The specific objectives are to develop and apply innovative techniques for determining the plasma’s heating function and the characteristic spatial scale of fine structuring; the method for instant diagnostics of plasma parameters by propagating wave trains; the technique for the determination of microphysical processes by macroscopic observables; to discriminate observationally between the theoretically predicted regimes of powerful releases of magnetic energy; to create a theoretical and observational foundation for stellar coronal seismology; and to implement novel methods for the analysis of wave phenomena in spatially-resolved observational data. The project is based upon the synthesis of analytical and numerical theoretical studies and forward modelling of observables, accounting for both magnetohydrodynamic and kinetic effects, and the analysis of multi-wavelength data obtained with space missions SDO, Hinode and STEREO and the Nobeyama radioheliograph. The knowledge to be gained from the project – robust and detailed diagnostics of key parameters and fundamental processes operating in the solar atmosphere – is of vital importance for the creation of models with a predictive value, and for further progression of solar, space and astro plasma physics.

Convocatoria de propuestas

ERC-2012-ADG_20120216
Consulte otros proyectos de esta convocatoria

Régimen de financiación

ERC-AG - ERC Advanced Grant

Institución de acogida

UNIVERSITY OF WARWICK
Aportación de la UE
€ 1 590 034,91
Dirección
KIRBY CORNER ROAD UNIVERSITY HOUSE
CV4 8UW COVENTRY
Reino Unido

Ver en el mapa

Región
West Midlands (England) West Midlands Coventry
Tipo de actividad
Higher or Secondary Education Establishments
Contacto administrativo
Catherine Cochrane (Ms.)
Investigador principal
Valeri Nakariakov (Prof.)
Enlaces
Coste total
Sin datos

Beneficiarios (1)