Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Chiral catalytic membrane reactor for high efficient preparation of <br/>enantiopure compounds

Objective

Chirality is a universal phenomenon in nature. Many pharmaceuticals, nutraceuticals, and agricultural chemicals have their own stereoisomers, with each enantiomer showing a unique biological activity. The production of pure enantiomer is therefore essential especially for medication safety and efficacy. In this project, a novel membrane reactor technique is proposed for efficient production of important chiral intermediates in the pharmaceutical industry and agrochemistry. New homochiral metal-organic framework (MOF) materials and membranes will be integrated with the latest development in ceramic hollow fibres, in an objective of generating a catalytic membrane reactor (CMR) coupling asymmetric synthesis and enantioselective separation into a single micro-tube. Such CMR to be developed is composed of a homochiral MOF membrane layer supported on a ceramic hollow fibre substrate with a unique dual-structure, i.e. a porous functional layer for preparing the MOF membrane and a finger-like layer where MOF-based asymmetric catalysts can be deposited. Reactants fed to the tube side of the hollow fibre substrate will be converted into desired enantiomer and by-products. Meanwhile, the desired enantiomer recognized by the MOF membrane materials coated on the exterior functional layer will adsorb on the membrane surface, followed by diffusing through the membrane for enantioselective separation, with the by-products rejected by the membrane and collected at the outlet. Such an original interdisciplinary approach of producing chiral intermediates involves the latest multidisciplinary knowledge and techniques in material, chemistry, membrane, chemical engineering and catalysis, and has not yet been attempted to date. Moreover, the successful delivery of this project allows possible assembling of such micro-tubular CMR into an industrial scale prototype device or system, for a larger scale production of chiral intermediates.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2012-IIF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IIF - International Incoming Fellowships (IIF)

Coordinator

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
EU contribution
€ 231 283,20
Address
SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
SW7 2AZ London
United Kingdom

See on map

Region
London Inner London — West Westminster
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0