Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

The effects of spatial attention on stimulus encoding in rat barrel cortex and on relationships between barrel cortex and locus coeruleus norepinephrine neuron spiking

Objective

Norepinephrine (NE) medications affect attention and the ability to ignore distracting stimuli. Current theories focus on prefrontal cortex (PFC) as the site of NE-induced modulation. Sensory cortex neurons are also affected by NE. We propose testing the hypothesis that NE may actually affect attention via direct action in sensory cortex. To test this hypothesis, we will develop a rat spatial attention task that is analogous to those used in the nonhuman primate. Head-fixed rats will be presented with a train of whisker deflection stimuli on both sides of the face and will have to report detection of the reward-predicting stimulus in a train of distractors via operant response. On alternating trial blocks, cues will direct spatial attention to a whisker on one or the other side of the face. We will then perform concurrent extracellular recordings from barrel cortex neurons, which respond selectively to whisker deflections on one side of the face, but not the other. We will test the hypothesis that stimulus encoding will be modulated when attention is directed in the receptive field of the neurons. Such modulations have been shown to originate in the PFC, which targets layer 6 of sensory cortices. We will record all cortical layers simultaneously to test the hypotheses that modulation occurs in layer 6 first and is then transmitted to other layers. Finally, we will test the novel theory that NE may modulate attention by acting directly in sensory cortex. To this aim, we will conduct simultaneous barrel cortex and locus coeruleus recordings and examine the relationship of their stimulus-evoked responses (micro- and mesoscopic signals) during attention. We have been developing a novel animal model of attention that is amicable to genetics and physiology methods which are more feasible in rodents. These experiments will expand our understanding of the mechanisms of attention to individual cortical layers and assess the role NE may play in this mechanism.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2012-IIF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IIF - International Incoming Fellowships (IIF)

Coordinator

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
EU contribution
€ 161 968,80
Address
HOFGARTENSTRASSE 8
80539 MUNCHEN
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0