Skip to main content
European Commission logo print header

Enhanced Modeling and Optimization of Batteries Incorporating Lithium-ion Elements


Developing rechargeable batteries with larger storage capacity, higher output power, faster charge/discharge time, and longer calendar lifetime could significantly impact the economical and environmental future of the European Union. New generations of lithium-ion batteries (LIBs) based on nanostructured electrodes are perfect candidates to supply all-electrical vehicles and favor the usage of renewable energies instead of fossil fuels. Hence, the global LIB revenue is expected to expand from $11 billion in 2011 up to $50 billion in 2020. The goal of this project is therefore to provide an advanced simulation and optimization platform to design LIBs with improved performance and increase the competitiveness of Europe in this domain. The proposed computer aided design (CAD) tool must satisfy three key requirements in order to reach this ambitious objective: (i) computational efficiency, (ii) results accuracy, and (iii) automated predictability. Massively parallel computing has been identified as the enabling technology to handle the first requirement. The second one will be addressed by implementing a state-of-the-art device operation model relying on a multi-scale resolution of the battery electrodes, a detailed description of the electron and ion motions, a material parametrization derived from ab-initio quantum transport techniques, and a validation of the approach through comparisons with experimental measurements. Finally, to meet the last requirement, the operation model will be coupled to a genetic algorithm optimizer capable of automatically predicting the LIB configuration that best matches pre-defined performance targets. The resulting CAD tool will be released as an open source package so that the entire battery community can benefit from it.

Call for proposal

See other projects for this call


Raemistrasse 101
8092 Zuerich

See on map

Schweiz/Suisse/Svizzera Zürich Zürich
Activity type
Higher or Secondary Education Establishments
Principal investigator
Mathieu Maurice Luisier (Prof.)
Administrative Contact
Mathieu Maurice Luisier (Prof.)
EU contribution
No data

Beneficiaries (1)