Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-06-18

Selective Carbon-Carbon Bond Activation: A Wellspring of Untapped Reactivity

Objetivo

The creation of new molecular entities and subsequent exploitation of their properties is central to a broad spectrum of research disciplines from medicine to materials. Most –if not all- of the efforts of organic chemists were directed to the development of creative strategies to built carbon-carbon and carbon-heteroatom bonds in a predictable and efficient manner. But is the creation of new bonds the only approach that organic chemistry should follow? Could we design the synthesis of challenging molecular skeleton no more through the construction of carbon-carbon bonds but rather through selective cleavage of carbon-carbon bonds (C-C bond activation)? The goal of this work is to develop powerful synthetic approaches for the selective C-C bond activation and demonstrate that it has the potential to be a general principle in organic synthesis for the regio-, diastereo- and even enantiomerically enriched preparation of adducts despite that C-C single bonds belong among the least reactive functional groups in chemistry. The realization of this synthetic potential requires the ability to functionalize selectively one C-C bond in compounds containing many such bonds and an array of functional groups. This site selective C-C bond activation is one of the greatest challenges that must be met to be used widely in complex-molecular synthesis. To emphasize the practicality of C-C bond activation, we will prepare in a single-pot operation challenging molecular framework possessing various stereogenic centers from very simple starting materials through selective C-C bond activation. Ideally, alkenes will be in-situ transformed into alkanes that will subsequently undergo the C-C activation even in the presence of functional group. This work will lead to ground-breaking advances when non-strained cycloalkanes (cyclopentane, cyclohexane) will undergo this smooth C-C bond activation with friendly and non toxic organometallic species.

Convocatoria de propuestas

ERC-2013-ADG
Consulte otros proyectos de esta convocatoria

Régimen de financiación

ERC-AG - ERC Advanced Grant

Institución de acogida

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Aportación de la UE
€ 2 367 495,00
Dirección
SENATE BUILDING TECHNION CITY
32000 Haifa
Israel

Ver en el mapa

Tipo de actividad
Higher or Secondary Education Establishments
Investigador principal
Ilan Marek (Prof.)
Contacto administrativo
Mark Davison (Mr.)
Enlaces
Coste total
Sin datos

Beneficiarios (1)