European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-05-28

Cavitation across scales: following Bubbles from Inception to Collapse

Objetivo

Cavitation is the formation of vapor cavities inside a liquid due to low pressure. Cavitation is an ubiquitous and destructive phenomenon common to most engineering applications that deal with flowing water. At the same time, the extreme conditions realized in cavitation are increasingly exploited in medicine, chemistry, and biology. What makes cavitation unpredictable is its multiscale nature: nucleation of vapor bubbles heavily depends on micro- and nanoscale details; mesoscale phenomena, as bubble collapse, determine relevant macroscopic effects, e.g. cavitation damage. In addition, macroscopic flow conditions, such as turbulence, have a major impact on it.

The objective of the BIC project is to develop the lacking multiscale description of cavitation, by proposing new integrated numerical methods capable to perform quantitative predictions. The detailed and physically sound understanding of the multifaceted phenomena involved in cavitation (nucleation, bubble growth, transport, and collapse in turbulent flows) fostered by BIC project will result in new methods for designing fluid machinery, but also therapies in ultrasound medicine and chemical reactors. The BIC project builds upon the exceptionally broad experience of the PI and of his research group in numerical simulations of flows at different scales that include advanced atomistic simulations of nanoscale wetting phenomena, mesoscale models for multiphase flows, and particle-laden turbulent flows. The envisaged numerical methodologies (free-energy atomistic simulations, phase-field models, and Direct Numerical Simulation of bubble-laden flows) will be supported by targeted experimental activities, designed to validate models and characterize realistic conditions.

Convocatoria de propuestas

ERC-2013-ADG
Consulte otros proyectos de esta convocatoria

Régimen de financiación

ERC-AG - ERC Advanced Grant

Institución de acogida

UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA
Aportación de la UE
€ 2 491 200,00
Dirección
Piazzale Aldo Moro 5
00185 Roma
Italia

Ver en el mapa

Región
Centro (IT) Lazio Roma
Tipo de actividad
Higher or Secondary Education Establishments
Contacto administrativo
Bianca Ciabatti (Mrs.)
Investigador principal
Carlo Massimo Casciola (Prof.)
Enlaces
Coste total
Sin datos

Beneficiarios (1)