Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-20

Threaded Molecular wires as supramoLecularly engineered multifunctional Materials

Objective

THREADMILL aims at enabling cross-disciplinary training and research at the interface between Supra-molecular Chemistry, Electrical Engineering, Physics, and Nanoscience. The overall goal is the generation of new knowledge underpinning the exploitation of supra-molecular wires (namely conjugated polyrotaxanes) in the fabrication and investigation of prototypical systems, both at the level of single-molecule devices, and of large-area polymer applications (LEDs, PVDs, ultra-fast photonic switches).

The training and research objectives of THREADMILL are:
1 Supra-molecular synthesis. Engineering of van der Waals, ionic, and p-p stacking interactions, leading to prototypes of multifunctional nanowires. Special emphasis on polyelectrolytic, conjugated polyrotaxanes. Synthetic and processing breakthroughs sought by combining Anderson synthetic chemistry expertise with that on ionic liquids of Mecerreyes.
2 Nano-fabrication of electrodes nanostructures (metals and conductive plastics)
3 Self-organisation. Self-assembly of hybrid metallic-supra-molecular architectures. Scanning probes, XPS, and TOF-SIMS.
4 Applications I: single-molecule devices. Fabrication of organic nano-optoelectronic devices incorporating prototypes of supra-molecular wires operating at surfaces.
5 Tran sport studies. Measurement of charge transport and mobility in organic semi-conducting wires bonded between homogeneous/heterogeneous electrodes. A theory component will be provided by collaboration with an independent, ongoing project at UCL. Details and a letter of support will be provided if invited to submit a full proposal.
6 Ultra-fast spectroscopy. evaluation of the TMWs potential for ultra-fast switches. General photophysical characterisation of ultra-fast processes.
7 Applications II: large area devices. optoelectronic devices incorporating large ensembles of the supra-molecular wires. Target applications: LEDs and photovoltaic diodes.
8 Dissemination and strategic development.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP6-2005-MOBILITY-1
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

RTN - Marie Curie actions-Research Training Networks

Coordinator

UNIVERSITY COLLEGE LONDON
EU contribution
No data
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (10)

My booklet 0 0