Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-16

Complex geometry and Bergman kernel asymptotics for line bundles

Objective

In complex analysis and geometry it is vital to be able to construct many holomorphic sections of a given line bundle over a complex manifold. A line bundle has curvature and it is well known that positive curvature is very favourable. This project will focus on two specific problems that can be summarized as constructing and quot; many and quot; holomorphic sections in two new important situations where previous techniques have not been successful: 1. The curvature of the line bundle is positive, but the curvature has complicated singularities. 2. The curvature is smooth and positive, but the manifold X has a boundary with negative curvature.

The main method for both problems will be to obtain Morse inequalities that estimate the obstructions to construct holomorphic sections (they estimate the dimensions of cohomology groups with values in high powers of the line bundle). In my PhD thesis a new approach to such inequalities was introduced. It used Bergman kernels and will be further developed in this project. While my work up to now has been purely analytical and concerned with smooth curvature Prof. Demailly and his group at the host institute are leading experts on the theory of positive currents, its use in the study of singular curvature and the combination analysis/algebra in complex geometry.

The main training objectives are to enable me to:
(a) acquire new expertise concerning currents
(b) become acquainted with their numerous recent applications in complex and algebraic geometry
(c) apply microlocal analysis in complex geometry.

This training will ideally complement my expertise and guide my future research into new promising areas. This project is closely related to various current research areas including embedding and deformation problems for complex and CR-manifolds, almost complex methods in symplectic geometry, constant scalar curvature metrics, the study of electrons in magnetic fields and recent developments in string/M-theory.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP6-2005-MOBILITY-5
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

EIF - Marie Curie actions-Intra-European Fellowships

Coordinator

UNIVERSITE JOSEPH FOURIER GRENOBLE I
EU contribution
No data
Address
621, avenue Centrale Domaine Universitaire de Saint-Martin d'Hères
GRENOBLE
France

See on map

Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0