Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-29

Exploring entanglement by noise measurements in nanoelectronic devices

Objective

The measurements of the time dependent current fluctuations (noise) in mesoscopic devices represent a great tool to investigate electron correlations. This tool can give access to information, which is not contained in usual conductance measurements, such a s the effective charge of carriers or to distinguish the classical and quantum nature of chaotic scattering in cavities. It can also be used to test particle statistics. The fermionic/bosonic character leads to anti-bunching/bunching of the particles.

The antibunching of the fermions is a consequence of the Pauli principle. If a fermionic beam splits into two partial ones, the fluctuations in the two partial beams are anticorrelated. A few years ago the host institute realized a fermionic analogon of the single-source Hanbury-Brown and amp;Twiss (HBT) experiment demonstrating that electrons anti-bunch as a consequence of their fermionic nature. However, bunching of electrons is possible, if for example electrons are paired in a spin singlet state, as realize d in conventional superconductors. This pairing would lead to positive correlations.

The goal of this project is to `search for positive current cross-correlations due to the entanglement of electrons. We will focus on correlation originated from two different types of entanglement in multiterminal semiconducting nanostructures: Spin entanglement will be studied in superconductor-normal hybrid structures; a super-conducting (Nb) electrode will be used as an emitter of correlated electron pairs into a Y-shaped beam splitter constructed in 2-dimensional electron gas (2DEG). Entanglement based on the orbital degree of freedom will be probed in a two-source HBT-interferometer, which will be fabricated in 2DEG operating in the quantum Hall regime.

These experiments help to understand and control the entangled mobile electrons, which is fundamental for the new field of quantum computation and communication in solid state environment.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP6-2005-MOBILITY-5
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

EIF - Marie Curie actions-Intra-European Fellowships

Coordinator

UNIVERSITY OF BASEL
EU contribution
No data
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0