Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-05-29

Heating and structure of Stellar Chromospheres

Objetivo

The bulk of radiation of a star originates from the photosphere, its visible surface. The temperature surprisingly increases outwards through the stellar atmosphere until, in case of the Sun, million of degrees are reached in the corona. While it has been shown that the required heating in the corona is due to magnetic fields, it is yet not clear for the layer in between, the so-called chromosphere.

The chromosphere is hard to observe and difficult to model so that, despite large progress during the last de cades, the thermal structure of stellar chromospheres, including the one of the Sun, and the related heating processes are still poorly understood and controversially debated. The heating, that is attained by pure mechanical heating via shock waves and/or processes connected to magnetic fields, must provide sufficient energy to counterbalance the radiative emission derived from observations of chromospheric diagnostics like the spectral lines of calcium and magnesium. This emission varies strongly between different stars, suggesting a different coverage with magnetic fields, but is always larger than the so-called basal flux. Recent simulations and also high-resolution observations suggest that the layer is highly structured and very dynamic. A time-dependent and spatially resolved numerical simulation is thus mandatory for a realistic description.

The project proposed here aims at the development and implementation of new methods to realistically describe the energy balance of stellar chromospheres, including simple model atoms for the most important agents calcium and magnesium and the resulting coupling between radiation field and chromospheric gas. The final goal is a set of three-dimensional self-consistent magnetohydrodynamics simulations with realistic chromospheric radiative transfer. Detailed comparisons with observations will be the ultimate key to the understanding of structure and heating of the chromosphere of the Sun and other stars.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

FP6-2005-MOBILITY-5
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

EIF - Marie Curie actions-Intra-European Fellowships

Coordinador

UNIVERSITETET I OSLO
Aportación de la UE
Sin datos
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos
Mi folleto 0 0