Skip to main content

Engineered modular bacterial hydrogen photo-production of hydrogen

Objective

Our project aims at designing reusable, standardized molecular building blocks that will produce a photosynthetic bacterium containing engineered chemical pathways for competitive, clean and sustainable hydrogen production. Our engineering approach will provide the next generation of synthetic biology engineers with the toolbox to design complex circuits of high potential industrial applications such as the photo-production or photo-degradation of chemical compounds with a very high level of integration.

For this purpose we have targeted on a cyanobacterium, a very chemically rich and versatile organism highly suitable for modeling, to be used as future platform for hydrogen production and biosolar applications. In particular, our synthetic biological approach aims at creating an anaerobic environment within the cell for an optimized, highly active iron-only hydrogenase by using an oxygen consuming device, which is connected to an oxygen sensing device and regulated by artificial circuits. This project will also help to establish a systematic hierarchical engineering methodology (parts, devices and systems) to design artificial bacterial systems using a truly interdisciplinary approach that decouples design from fabrication.

We aim to construct biological molecular parts by engineering proteins with new enzymatic activities and molecular recognition patterns, by combining computational and in-vitro evolution methodologies. Subsequently, we will design novel devices (e.g. input/output, regulatory and metabolic) by combining these parts and by using the emerging knowledge from systems biology. Furthermore, we shall design custom circuits of devices applying control engineering and optimization. In parallel, we will develop a cyanobacterial chassis able to integrate our synthetic circuits using a model-driven biotechnology.

Call for proposal

FP6-2005-NEST-PATH
See other projects for this call

Funding Scheme

STREP - Specific Targeted Research Project

Coordinator

ECOLE POLYTECHNIQUE
Address
Route De Saclay
Palaiseau
France

Participants (6)

INSTITUTO DE BIOLOGIA MOLECULAR E CELULAR
Portugal
Address
Rua Do Campo Alegre, 823
Porto
THE UNIVERSITY OF SHEFFIELD
United Kingdom
Address
Firth Court, Western Bank
Sheffield
UNIVERSIDAD POLITÉCNICA DE VALENCIA
Spain
Address
Camino De Vera S/n
Valencia
UNIVERSITE D'EVRY-VAL-D'ESSONNE
France
Address
Boulevard François Mitterrand
Evry
UPPSALA UNIVERSITY
Sweden
Address
St Olofsgatan 10 B
Uppsala
WEIZMANN INSTITUTE OF SCIENCE
Israel
Address
Herzl Street
Rehovot