Objective Our project aims at designing reusable, standardized molecular building blocks that will produce a photosynthetic bacterium containing engineered chemical pathways for competitive, clean and sustainable hydrogen production. Our engineering approach will provide the next generation of synthetic biology engineers with the toolbox to design complex circuits of high potential industrial applications such as the photo-production or photo-degradation of chemical compounds with a very high level of integration.For this purpose we have targeted on a cyanobacterium, a very chemically rich and versatile organism highly suitable for modeling, to be used as future platform for hydrogen production and biosolar applications. In particular, our synthetic biological approach aims at creating an anaerobic environment within the cell for an optimized, highly active iron-only hydrogenase by using an oxygen consuming device, which is connected to an oxygen sensing device and regulated by artificial circuits. This project will also help to establish a systematic hierarchical engineering methodology (parts, devices and systems) to design artificial bacterial systems using a truly interdisciplinary approach that decouples design from fabrication.We aim to construct biological molecular parts by engineering proteins with new enzymatic activities and molecular recognition patterns, by combining computational and in-vitro evolution methodologies. Subsequently, we will design novel devices (e.g. input/output, regulatory and metabolic) by combining these parts and by using the emerging knowledge from systems biology. Furthermore, we shall design custom circuits of devices applying control engineering and optimization. In parallel, we will develop a cyanobacterial chassis able to integrate our synthetic circuits using a model-driven biotechnology. Fields of science natural sciencesbiological sciencesmicrobiologybacteriologynatural sciencesbiological sciencessynthetic biologynatural sciencesbiological sciencesbiochemistrybiomoleculesproteinsengineering and technologyenvironmental engineeringenergy and fuelsrenewable energyhydrogen energyengineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringcontrol engineering Programme(s) FP6-POLICIES - Policy support: Specific activities covering wider field of research under the Focusing and Integrating Community Research programme 2002-2006. Topic(s) NEST-2005-Path-SYN - Synthetic biology Call for proposal FP6-2005-NEST-PATH See other projects for this call Funding Scheme STREP - Specific Targeted Research Project Coordinator ECOLE POLYTECHNIQUE Address Route de saclay Palaiseau France See on map Links Website Opens in new window EU contribution No data Participants (6) Sort alphabetically Sort by EU Contribution Expand all Collapse all INSTITUTO DE BIOLOGIA MOLECULAR E CELULAR Portugal EU contribution € 0,00 Address Rua do campo alegre, 823 Porto See on map Links Website Opens in new window Other funding No data THE UNIVERSITY OF SHEFFIELD United Kingdom EU contribution € 0,00 Address Firth court, western bank Sheffield See on map Links Website Opens in new window Other funding No data UNIVERSIDAD POLITÉCNICA DE VALENCIA Spain EU contribution € 0,00 Address Camino de vera s/n Valencia See on map Links Website Opens in new window Other funding No data UNIVERSITE D'EVRY-VAL-D'ESSONNE France EU contribution € 0,00 Address Boulevard françois mitterrand Evry See on map Links Website Opens in new window Other funding No data UPPSALA UNIVERSITY Sweden EU contribution € 0,00 Address St olofsgatan 10 b Uppsala See on map Links Website Opens in new window Other funding No data WEIZMANN INSTITUTE OF SCIENCE Israel EU contribution € 0,00 Address Herzl street Rehovot See on map Links Website Opens in new window Other funding No data