Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-05-29

Development of an Autonomous Low-Temperature Solar Rankine Cycle System for Reverse Osmosis Desalination (RO-SOLAR-RANKINE)

Objetivo

The research regards the development, application testing and performance evaluation of a low temperature solar organic Rankine cycle system for Reverse Osmosis (Ro) desalination. Below a technical description of the system to be developed is given: Thermal energy produced by the solar array evaporates the working fluid (HFC,:,134a) in the evaporator surface. The super-heated vapour is driven to the expanders where the generated mechanical work drives the RO unit pumps (high pressure pump, cooling water pump, feed water pump) and circulating pump. The saturated vapour at the expanders' outlet is directed to the condenser and condensates. On the condenser surface, seawater is pre-heated and directed to the seawater reservoir. Seawater pre-heating is applied to increase the fresh water recovery ratio. The seawater tank is insulated. The use of seawater for condensation purpose on the condenser surface decreases the temperature of "Low Temperature Reservoir" of Rankine cycle thus a better cycle efficiency is achieved.

The saturated liquid at the condenser outlet is pressurised in a special pressurisation arrangement consists of two vessels and three valves, substituting a pump. The sub-cooled liquid at the pressurisation arrangement outlet is driven to the economiser. The economiser acts as working fluid pre-heater. In the economiser outlet saturated liquid is formed, which is directed to evaporator inlet and the cycle is repeated. For the prototype system 240 m2 of vacuum tube solar collectors will be deployed. The evaporator and condenser capacity is estimated about 100 kW. For these systems' characteristics and considering a water recovery ratio of seawater RO desalination unit of 30%, the average yearly fresh water production is estimated at 1450 m3 (or 4 m3 daily). Specific innovations of the system are: Low temperature thermal sources can be exploited efficiently for fresh water production; solar energy is used indirectly and does not heat seawater; the RO...

Convocatoria de propuestas

FP6-2002-SME-1
Consulte otros proyectos de esta convocatoria

Régimen de financiación

COOPERATIVE -

Coordinador

AGRICULTURAL UNIVERSITY OF ATHENS.
Aportación de la UE
Sin datos
Dirección
Iera Odos 75
ATHENS
Grecia

Ver en el mapa

Coste total
Sin datos

Participantes (7)