Objective
For gene therapy, the use of non viral DNA offers the advantage of lack of immunogenicity, absence of DNA size limit, simpler GMP production, and improved safety/toxicity profiles. However, the efficient, precise and safe delivery of plasmids or of other forms of non viral DNA remains to be improved. Two different in vivo non viral DNA delivery techniques have been recently introduced, which are presently the most efficient: -Electrotransfer, using electric pulses (ET), -Laser beam gene transfer (LBGT). Our aim is to increase precision and selectivivity of non viral DNA transfer, by introducing molecular strategies to improve LT and LBGT. This optimization will be performed in skeletal muscle and skin, by assessing: -for each delivery mode (ET or LBGT), what is the best promoter (ubiquitous or tissue-specific), -the preferential form of non viral DNA: 1) conventional plasmid; 2) prokaryotic-backbone deleted "miniplasmid" devoid of antibiotic resistance gene; or 3) linear PCR-produced expression cassette, -the usefulness of an optimized secretion sequence for secreted transgenic proteins, -what is the best DNA formulation: "naked" versus associated to cationic or to non cationic lipid, -if pre- or post-iontophoresis is beneficial. This study will be performed in the context of 3 different gene therapy paradigms, and for 4 different medical applications: olong term intracellular expression of dystrophin gene in skeletal muscle, for the therapy of Duchenne muscular dystrophy, olong term blood secretion of circulating protein: erythropoietin (EPO) for chronic renal failure, and secreted monoclonal antibodies for antitumour passive immunization, oshort term transgene expression in skin for raising humoral and cellular immune response in antitumour vaccination. Our overall objective is to develop non viral DNA technology into a pre-clinical phase. Consequently, the safety issue (tissue damage, inflammation, integration, etc...) will be particularly...
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- medical and health sciences medical biotechnology genetic engineering gene therapy
- medical and health sciences basic medicine immunology immunisation
- natural sciences biological sciences genetics DNA
- medical and health sciences basic medicine neurology muscular dystrophies duchenne muscular dystrophy
- medical and health sciences basic medicine pharmacology and pharmacy drug resistance antibiotic resistance
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP6-2003-LIFESCIHEALTH-I
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.