Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Contenuto archiviato il 2024-06-20

Molecular optimization of laser/electrotransfer DNA administration into muscle and skin for gene therapy

Obiettivo

For gene therapy, the use of non viral DNA offers the advantage of lack of immunogenicity, absence of DNA size limit, simpler GMP production, and improved safety/toxicity profiles. However, the efficient, precise and safe delivery of plasmids or of other forms of non viral DNA remains to be improved. Two different in vivo non viral DNA delivery techniques have been recently introduced, which are presently the most efficient: -Electrotransfer, using electric pulses (ET), -Laser beam gene transfer (LBGT). Our aim is to increase precision and selectivivity of non viral DNA transfer, by introducing molecular strategies to improve LT and LBGT. This optimization will be performed in skeletal muscle and skin, by assessing: -for each delivery mode (ET or LBGT), what is the best promoter (ubiquitous or tissue-specific), -the preferential form of non viral DNA: 1) conventional plasmid; 2) prokaryotic-backbone deleted "miniplasmid" devoid of antibiotic resistance gene; or 3) linear PCR-produced expression cassette, -the usefulness of an optimized secretion sequence for secreted transgenic proteins, -what is the best DNA formulation: "naked" versus associated to cationic or to non cationic lipid, -if pre- or post-iontophoresis is beneficial. This study will be performed in the context of 3 different gene therapy paradigms, and for 4 different medical applications: olong term intracellular expression of dystrophin gene in skeletal muscle, for the therapy of Duchenne muscular dystrophy, olong term blood secretion of circulating protein: erythropoietin (EPO) for chronic renal failure, and secreted monoclonal antibodies for antitumour passive immunization, oshort term transgene expression in skin for raising humoral and cellular immune response in antitumour vaccination. Our overall objective is to develop non viral DNA technology into a pre-clinical phase. Consequently, the safety issue (tissue damage, inflammation, integration, etc...) will be particularly...

Invito a presentare proposte

FP6-2003-LIFESCIHEALTH-I
Vedi altri progetti per questo bando

Meccanismo di finanziamento

IP - Integrated Project

Coordinatore

INSTITUT NATIONAL DE LA SANTÉ ET DE LA RECHERCHE MÉDICALE
Contributo UE
Nessun dato
Costo totale
Nessun dato

Partecipanti (8)