Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-20

Quantitative spectroscopy for atmospheric and astrophysical research

Objective

In order to model our environment, or indeed the many environments that occur in the Universe, one needs to know its molecular constitution. Beyond determining what is there, an essential element to the successful modelling of such an environment is to know precisely how much is there. Molecular spectroscopy allows one to obtain information about molecules by analysing the absorption and emission of light. Since light can travel long distances before being detected and analysed, spectroscopy is ideally suit ed for remote sensing, one can identify molecules in locations not easily accessible, such as the upper layers of the Earth's atmosphere, interstellar clouds, and the atmospheres of other planets, comets and of cool stars. Not only can one use spectroscopic methods to determine what is there, but also how much is there.

The aims of the network are:
(1) to provide high-accuracy experimental and theoretical data on molecular transitions needed for measurements in remote environments; and
(2) to train early-stage and experienced researchers with the quantitative experimental and theoretical skills to make and interpret such spectroscopic measurements.

The multidisciplinary network combines diverse, state-of-the-art experimental techniques with a variety of high-level theoretical methods. To design an experiment capable of carrying out measurements with the accuracy needed for remote sensing, it is necessary to draw on numerous disciplines such as optics, electronics design, vacuum technology, and informatics. Similarly, the theoretical component of the network draws on theoretical chemistry and physics, applied mathematics, and informatics.

The expected, high-accuracy results will also have significant applications in metrology, combustion science and studies of plasmas for industrial purposes. Moreover, highly accurate measurements of molecular energies serve as a unique base tool for molecular dynamics and intra-molecular energy transfer studies.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP6-2002-MOBILITY-1
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

RTN - Marie Curie actions-Research Training Networks

Coordinator

BERGISCHE UNIVERSITÄT WUPPERTAL
EU contribution
No data
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (12)

My booklet 0 0