Objetivo
STATLOG has completed an evaluation of the performance of machine learning, neural and statistical algorithms on large-scale, complex commercial and industrial problems. The overall aim has been to give an objective assessment of the potential for classification algorithms in solving significant commercial and industrial problems, and to widen the foundation for commercial exploitation of these and related algorithms both old and new.
This result describes the learning casual network algorithms and software currently being developed as part of the casual structures from inductive learning project (CASTLE), a software package which allows the user to learn the polytree's structure from raw data, to propagate knowledge throughout a polytree either interactively or in batch mode, to simulate data from a given casual network and to create and edit casual networks. CASTLE has been created to test and evaluate Bayesian learning algorithms. The user can edit a polytree, ie draw nodes, link them by arrows, give names to the nodes and cases, and define the conditional or marginal probabilities in each node. This option can be combined with a simulation process to offer a way of testing the performance of the algorithms implemented. Included in CASTLE is the possibility of propagating knowledge throughout a polytree. Using this module the learned net can be consulted to reason about the interpretation of specific input data. The interpretation process involves instantiating a set of variables corresponding to the input data, calculating its impact on the probabilities of a set of variables designated as hypotheses, and finally selecting the most likely combination of these hypotheses. There is now a batch version of CASTLE. This version allows the user to execute the learning algorithms in batch mode. The user can provide the program with a new type of file containing a set of samples of observed values of any variable but the last one (the one thought of as classifier). The program propagates the observed knowledge throughout the net and outputs a file containing the posterior probability of the cases of the classifier given the observed values of the rest of the variables.
The project involves the evaluation of the performance of machine learning algorithms on large scale, complex commercial and industrial problems. The overall aim is to give an objective assessment of the potential for machine learning algorithms in solving significant commercial and industrial problems, and to widen the foundation for commercial exploitation of these and related algorithms both old and new.
The 3 main approaches to decision problems are machine learning algorithms using decision trees, Bayesian methods of classical statistics and discrimination or regression methods generally. Partly due to the limited field of application of these methods, newer methods have emerged in response to new problems: relational learning algorithms deal with complex data in the form of rules; neural net algorithms mirror the behaviour of neural networks in the brain; while genetic algorithms solve problems by following an evolutionary path.
The main results expected are:
evaluation and comparison of the main artificial intelligence/machine learning algorithms, with a full specification of their merits and demerits and their range of application;
establishment of an objective set of criteria for the evaluation and comparison of algorithms;
establishment of an interactive environment for comparative testing of classification algorithms;
establishments of a set of measures for datasets, by which the performance of algorithms can be predicted;
a draftmanuscript for a handbook of machine learning and statistical classification procedures, giving practical guidance for large scale complex classification problems in commerce and industry;
an objective assessment of several novel techniques for controlling a simulated spacecraft model.
Progress has been made in the following areas:
an improved version of a neural network algorithm (back propagation) to incorporate the differing costs of wrong decisions;
proposals for incorporating decision costs into the learning and testing phases of machine learning algorithms;
an objective assessment of the performance of machine learning, neural net techniques and traditional forecasting techniques in the prediction of economic datasets.
Historically, the three main approaches to decision problems have been (i) machine learning algorithms using decision trees; (ii) Bayesian methods of classical statistics and (iii) discrimination or regression methods generally. Partly due to the limited field of application of these methods, more recent methods have emerged in response to new problems: relational learning algorithms deal with complex data in the form of rules; neural net algorithms are linked to the fascination of mankind with understanding and emulating the human brain; while genetic algorithms solve problems by following an evolutionary path. The fact that the various methods may sometimes be applied to the same dataset with contradictory results is partly due to their treatment of the data but is more to do with the different emphasis put on the classification/prediction/optimisation aspects of the problem.
By testing around 23 algorithms from this list on about 22 large-scale and commercially important problems, this project has determined to what extent the various algorithms meet the needs of industry and has provided improved software designed to extend the commercial exploitation of advanced data analysis, including machine learning type algorithms.
The objectives of the project have been to:
- provide critical performance measurements, and criteria for measurement on available classification algorithms which will improve confidence in full exploitation
- indicate the nature and scope for next-stage development which particular algorithms require to meet commercial performance expectations
- indicate the most promising avenues of development for commercially immature approaches.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
- ciencias naturales informática y ciencias de la información ciencia de datos
- ciencias naturales informática y ciencias de la información software
- ciencias naturales matemáticas matemáticas aplicadas estadística y probabilidad estadística bayesiana
- ciencias naturales informática y ciencias de la información inteligencia artificial aprendizaje automático
- ciencias naturales informática y ciencias de la información inteligencia artificial inteligencia computacional
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Datos no disponibles
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Datos no disponibles
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Datos no disponibles
Coordinador
70567 STUTTGART
Alemania
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.