Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-04-19

Inductive Logic Programming

Objetivo

The main long term technical goal of the ILP project is to upgrade the techniques of the classical empirical learning paradigm to a logic programming framework. In this way ILP aims to overcome the two main limitations of classical empirical or similarity based learning algorithms, such as the TDIDT-family: the use of a limited knowledge representation formalism (essentially a propositional logic), and the inability to use substantial background knowledge in the learning process.
The inductive logic programming (ILP) project has contributed theoretical foundations, both logical and complexity-theoretical, which were needed to provide further insight into the major challenges facing ILP, as well as provided fundamental techniques. The objectives of the ILP project were met and exceeded in each of the major topics addressed: theory revision, predicate invention, imperfect data handling, declarative bias, and ILP theory (covering both learnability issues and representational issues).
Notably, not only were theoretical results obtained, but systems based on these results were implemented and tested on a variety of problems,including some important real-world applications.
Some of the systems developed are freely available in the public domain for academic purposes.

The technology developed has been applied to important biological, ecological, engineering and business problems. For example, the Oxford results in several biological domains were published in respected biological and artificial intelligence journals, they were obtained using the general purpose ILP system Golem, and they were judged understandable by human biologists, a result which has seldom been achieved within artificial intelligence.

Besides data mining the other key application area of ILP technology lies in a software engineering context; some of the project results include automatic test-case generation and induction of loop invariants.

Theoretical results obtained address: the (non)-pac-learnability of certain classes of logic programs;
the study of an alternative semantics or problem specification for inductive logic programming (ILP) based on Helft's framework.

Results in theory revision included:
the development of multiple predicate learners in an incremental and empirical setting;
the study of minimal revisions to theories;
a technique to derive full clausal theories from deductive databases.

A better understanding of predicate invention was obtained:
by Muggleton's formal framework (and lattice) for predicate invention;
by introducing new techniques for predicate invention;
by comparative studies of predicate invention.

Results on handling imperfect data included:
adaptation of some mechanisms from attribute value learning to ILP;
development of stochastic ILP algorithms;
new results on information compression and Kolmogorov complexity.

Results on declarative bias included:
abstract frameworks for formulating bias and shifting the bias;
comparisons between existing frameworks for bias;
application of bias to programming assistants.
APPROACH AND METHODS

The project focuses on the following research topics:

- Theory of ILP: the theoretical implications of the use of logic programming for inductive learners.

This involves the study of:
. the properties of generalisation and specialisation operators such as inverse resolution
. the complexity and convergence aspects of particular inductive algorithms (this is concerned with learnability theory)
. logical frameworks for induction
. the development of a framework and methodology for empirical evaluation of ILP-learners.

- Theory Revision: the issues involved in learning multiple concepts in a first-order logic framework. Learning multiple concepts is a form of theory revision, where several related predicates or concepts may be modified or revised.

- Imperfect data: to upgrade and adapt existing noise-handling mechanisms form attribute value learning algorithms.

- Predicate Invention: the investigation of methods to invent new predicates. These methods aim at extending the vocabulary of the learner whenever the available vocabulary is unsatisfactory or insufficient and by doing so they extend the range of learnable concepts.

- Declarative Bias: the exploration of methods and formalisms to explicitly and declaratively represent the bias of inductive logic learners.

POTENTIAL

The expected outcome of the project is a sound basis for the development of systems that are able to induce logic programs from examples in real-life applications that involve substantial amounts of background knowledge.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Datos no disponibles

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

Datos no disponibles

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

Datos no disponibles

Coordinador

KATHOLIEKE UNIVERSITEIT LEUVEN
Aportación de la UE
Sin datos
Dirección
TERVUURSEVEST, 101
3000 LEUVEN
Bélgica

Ver en el mapa

Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos

Participantes (6)

Mi folleto 0 0