Project description
Advanced Computing, embedded and Control Systems
Application requirements, power, and technological constraints are driving the architectural convergence of future processors towards heterogeneous many-cores. This development is confronted with variability challenges, mainly the susceptibility to time-dependent variations in silicon devices. Increasing guard-bands to battle variations is not scalable, due to the too large worst-case cost impact for technology nodes around 10 nm. The goal of HARPA is to enable next-generation embedded and high-performance heterogeneous many-cores to cost-effectively confront variations by providing Dependable-Performance: correct functionality and timing guarantees throughout the expected lifetime of a platform under thermal, power, and energy constraints. The HARPA solution employs a cross-layer approach. A middleware implements a control engine that steers software/hardware knobs based on information from strategically dispersed monitors. This engine relies on technology models to identify/exploit various types of platform slack - performance, power/energy, thermal, lifetime, and structural (hardware) - to restore timing guarantees and ensure the expected lifetime amidst time-dependent variations. Dependable-Performance is critical for embedded applications to provide timing correctness; for high-performance applications, it is paramount to ensure load balancing in parallel phases and fast execution of sequential phases. The lifetime requirement has ramifications on the manufacturing process cost and the number of field-returns. The HARPA novelty is in seeking synergies in techniques that have been considered virtually exclusively in the embedded or high-performance domains (worst-case guaranteed partly proactive techniques in embedded, and dynamic best-effort reactive techniques in high-performance). HARPA will demonstrate the benefits of merging concepts from these two domains by evaluating key applications from both segments running on embedded and high-performance platforms.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology mechanical engineering manufacturing engineering
- natural sciences computer and information sciences software
- natural sciences chemical sciences inorganic chemistry metalloids
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-ICT-2013-10
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
20133 Milano
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.