Objective
Quantum semiconductor microcavities are structures in which photons can be confined within an area whose size is comparable to the wavelength of light. In this scenario, light-matter interactions can be substantially enhanced. A traditional microcavity is composed of two dielectric or semiconductor Bragg reflectors confining an active area which contains a quantum object such as a quantum well. From the initial observation of strong coupling between photons and excitons in such microcavities, the physics of polaritons has developed very quickly demonstrating such fascinating effects as stimulated scattering and Bose-condensation of polariton; room-temperature polariton lasing, superfluidity, bistability and multistability, soliton formation and many others. Recently it was shown that a localized state of light (Tamm Plasmon) can be formed at the interface between a specially designed Bragg mirror and metallic layer. For decades it was assumed that metallic elements are detrimental to optical coherence and lasing, however the intrinsic properties of the spatial distribution of the electric field of the Tamm Plasmon facilitate optical coherence and lasing in a microcavity with an embedded metallic layer. By coupling a microcavity polariton to a Tamm Plasmon, lateral localization can be achieved, opening the way for polaritonic logic elements and polaritonic circuits.
This project is aimed at the design, fabrication and investigation of novel optoelectronic structures: hybrid metallic microcavities. These structures will be used for fabrication of lasers and sources of single photons and entangled photon pairs, polaritonic logic circuits as well as for fundamental studies of microcavity polaritons.
Fields of science
Call for proposal
FP7-PEOPLE-2013-IRSES
See other projects for this call
Coordinator
DH1 3LE Durham
United Kingdom