Objetivo
"Sorin Popa's deformation/rigidity theory has lead to an enormous progress in our understanding of von Neumann algebras coming from discrete groups and their actions on probability spaces. In a five year long collaboration with Sorin Popa, we solved many long-standing open problems in this area, including superrigidity theorems for group measure space II_1 factors, results on the possible fundamental groups of II_1 factors, and uniqueness theorems for Cartan subalgebras.
In the first part of the project, we want to establish new unique Cartan decomposition theorems for II_1 factors coming from hitherto intractable groups. Using methods coming from Lie groups, ergodic theory and geometric group theory, we want to reach such results for lattices in higher rank simple Lie groups, and for countable groups with nonvanishing L^2-Betti numbers. An important intermediate step will be the unique Cartan decomposition of Bernoulli crossed products.
Secondly we want to prove classification theorems for type III factors that are equally strong as the existing results for the type II_1 case. This includes a complete classification of the noncommutative Bernoulli shifts of the free groups and will require an intricate combination of Tomita/Takesaki and deformation/rigidity theory.
The methods developed so far bring within reach an attack on two of the most important open problems in operator algebras and functional analysis: the free group factor problem and Connes's rigidity conjecture. The exact progress on these problems is of course unforeseeable, but it is sure that the research on these problems will lead to an even deeper interaction between diverse areas of mathematics as operator algebras, group theory, functional analysis, ergodic theory, and descriptive set theory. Intermediate goals are the classification of natural classes of group von Neumann algebras, including those coming from Baumslag-Solitar groups, wreath product groups, and other families of discrete groups."
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
- ciencias naturales matemáticas matemáticas puras matemáticas discretas lógica matemática
- ciencias naturales matemáticas matemáticas puras análisis matemático análisis funcional álgebra de operadores
- ciencias naturales matemáticas matemáticas puras álgebra geometría algebraica
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
ERC-2013-CoG
Consulte otros proyectos de esta convocatoria
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Institución de acogida
3000 Leuven
Bélgica
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.