Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Coherent manipulation and control of heat in solid-state nanostructures: the era of coherent caloritronics

Objective

"Electronic nanodevices have demonstrated to be versatile and effective tools for the investigation of exotic quantum phenomena under controlled and adjustable conditions. Yet, these have enabled to give access to the manipulation of charge flow with unprecedented precision. On the other hand, the wisdom dealing with control, measurements, storage, and conversion of heat in nanoscale devices, the so-called “caloritronics” (from the Latin word “calor”, i.e. heat), despite a number of recent advances is still at its infancy. Although coherence often plays a crucial role in determining the functionalities of nanoelectronic devices very little is known of its role in caloritronics. In such a context, coherent control of heat seems at present still very far from reach, and devising methods to phase-coherently manipulate the thermal current would represent a crucial breakthrough which could open the door to unprecedented possibilities in several fields of science.
Here we propose an original approach to set the experimental ground for the investigation and implementation of a new branch of science, the “coherent caloritronics”, which will take advantage of quantum circuits to phase-coherently manipulate and control the heat current in solid-state nanostructures. To tackle this challenging task our approach will follow three main separate approaches, i.e. the coherent control of heat transported by electrons in Josephson nanocircuits, the coherent manipulation of heat carried by electrons and exchanged between electrons and lattice phonons in superconducting proximity systems,
and finally, the control of the heat exchanged between electrons and photons by coherently tuning the coupling with the electromagnetic environment. We will integrate superconductors with normal-metal or semiconductor electrodes thus exploring new device concepts such as heat transistors, heat diodes, heat splitters, where thermal flux control is achieved thanks to the use of the quantum phase."

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2013-CoG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-CG - ERC Consolidator Grants

Host institution

CONSIGLIO NAZIONALE DELLE RICERCHE
EU contribution
€ 1 754 897,00
Address
PIAZZALE ALDO MORO 7
00185 Roma
Italy

See on map

Region
Centro (IT) Lazio Roma
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0