Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-27

Spectroscopic Studies of N2 Reduction: From Biological to Heterogeneous Catalysis

Objective

"The conversion of dinitrogen (N2) to ammonia (NH3) is of fundamental biological and economic importance. The catalytic conversion is achieved either industrially, using heterogeneous catalysts or biologically, by the nitrogenase enzyme. However, in both cases, the mechanistic details of the process are not fully understood. In order to design advance catalysts that will be essential for a sustainable energy economy, an in-depth understanding of both the biological and chemical mechanisms is required. The goal of this proposal is to develop advanced spectroscopic tools, which will allow for a detailed description of the atomic level processes in the both the biological and the heterogeneous systems. This will include the development of valence to core resonant X-ray emission spectroscopy as a unique probe of transition metal ligation in complex media. High-resolution X-ray absorption, X-ray emission, X-ray magnetic circular dichroism, and nuclear resonant vibrational spectroscopy will be utilized and their chemical information content fully developed. These experiments will be correlated to advanced quantum chemical calculations to obtain a detailed picture of the electronic structure of the catalytic systems. The results should provide a clear understanding of the electronic factors that govern N-N bond cleavage. The proposed research will bring together the fields of biochemistry and heterogeneous catalysis, by utilizing inorganic, physical and theoretical chemistry to advance our fundamental understanding of N2 cleavage. The proposed developments will provide a powerful set of novel tools for the elucidation of transition metal catalyzed homogenous and heterogeneous reaction mechanisms. The long-term goal is to pave the way for rationally designed catalytic systems, based on fundamental mechanistic knowledge."

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2013-CoG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-CG - ERC Consolidator Grants

Host institution

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
EU contribution
€ 1 796 040,00
Address
HOFGARTENSTRASSE 8
80539 Munchen
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (2)

My booklet 0 0