Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-27

Innovative Catalyst Design for Large-Scale, Sustainable Processes

Objective

A systematic and novel, multi-scale model based catalyst design methodology will be developed. The fundamental nature of the models used is unprecedented and will represent a breakthrough compared to the more commonly applied statistical, correlative relationships. The methodology will focus on the intrinsic kinetics of (potentially) large-scale processes for the conversion of renewable feeds into fuels and chemicals. Non-ideal behaviour, caused by mass and heat transfer limitations or particular reactor hydrodynamics, will be explicitly accounted for when simulating or optimizing industrial-scale applications. The selected model reactions are situated in the area of biomass upgrading to fuels and chemicals: fast pyrolysis oil stabilization, glycerol hydrogenolysis and selective oxidation of (bio)ethanol to acetaldehyde.

For the first time, a systematic microkinetic modelling methodology will be developed for oxygenates conversion. In particular, stereochemistry in catalysis will be assessed. Two types of descriptors will be quantified: kinetic descriptors that are catalyst independent and catalyst descriptors that specifically account for the effect of the catalyst properties on the reaction kinetics. The latter will be optimized in terms of reactant conversion, product yield or selectivity. Fundamental relationships will be established between the catalyst descriptors as determined by microkinetic modelling and independently measured catalyst properties or synthesis parameters. These innovative relationships allow providing the desired, rational feedback in from optimal descriptor values towards synthesis parameters for a new catalyst generation. Their fundamental character will guarantee adequate extrapolative properties that can be exploited for the identification of a groundbreaking next catalyst generation.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2013-CoG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-CG - ERC Consolidator Grants

Host institution

UNIVERSITEIT GENT
EU contribution
€ 1 999 876,80
Address
SINT PIETERSNIEUWSTRAAT 25
9000 GENT
Belgium

See on map

Region
Vlaams Gewest Prov. Oost-Vlaanderen Arr. Gent
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0