Objective
"Due to the tremendous growth in mobile devices such as smartphones, tablet PCs, and laptops over the past years, a larger and larger fraction of Internet traffic is delivered wirelessly. Dealing with this vast increase in traffic is one of the most important challenges for future wireless networks. State-of-the-art wireless communication already operates close to Shannon capacity. The only viable option to further increase data rates is to use high bandwidth channels in the very high frequency part of the radio spectrum. However, this spectrum suffers from high attenuation and signal absorption, restricting communication primarily to line-of-sight (LOS) scenarios. This in turn requires a radical rethinking of wireless networking. We envision that future wireless networks will consist of many highly directional LOS channels for communication between access points (APs) and end devices. Such an environment is extremely dynamic, in particular for mobile devices. At the same time, such channels experience very little interference and resources that would otherwise be used to handle interference can now be used to further increase achievable data rates.
We propose to build a wireless network architecture that maintains directional LOS channels between several APs and (mobile) end devices. Data is transmitted via all of these channels and end device uses multiple antennas to receive and decode several such data streams simultaneously. The main complexity of the design lies in the selection of APs as well as the beamforming directions of their antennas, given the large number of end devices that future wireless networks will have to support. To speed up this decision process, the system maintains a map of the radio environment and learns likely sequences of beamforming patterns and APs. This further allows to intelligently switch off APs to improve energy efficiency. We believe that such a design is the key element for the scalability of future wireless networks."
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciencescomputer and information sciencesinternet
- engineering and technologyelectrical engineering, electronic engineering, information engineeringinformation engineeringtelecommunicationsmobile phones
You need to log in or register to use this function
Call for proposal
ERC-2013-CoG
See other projects for this call
Funding Scheme
ERC-CG - ERC Consolidator GrantsHost institution
28918 Leganes (Madrid)
Spain