Skip to main content

Effective Theories for Strong Interactions: Precision Tools to Meet Experiment


The strong force is one of the four fundamental interactions of nature. It is responsible for binding together the constituents of atomic nuclei and for making up the vast majority of the mass of the visible universe. According to present understanding, quantum chromodynamics (QCD) is the theory governing strong interactions. Understanding how QCD gives rise to the whole complex phenomenology of nuclei and particles affected by strong forces is one of the great theoretical challenges of our time.
Modern experiments, like the Large Hadron Collider at CERN, are probing our knowledge of strong interactions at an unprecedented level of precision. Exploiting the full potential of these experiments requires improved calculations in QCD. A precise understanding of the QCD background and the analysis of new observables are crucial to unambiguously identify signals of physics that is not described by the Standard Model of the presently known fundamental constituents of matter. In my project I exploit the powerful tools of theories formulated in terms of effective degrees of freedom to provide accurate analytic solutions of QCD by means of rigorous, systematically improvable approximations.
In the high-energy regime, I will employ novel ideas and computational techniques to gain theoretical control on the physics governing the phenomena we observe at electron-positron and proton-proton colliders. I will formulate predictions beyond the state of the art for observables which are of great interest for ongoing experiments at CERN.
For energy scales up to 1 GeV, I will employ new methods to improve calculations of strong-interaction effects in quantities measured to high precision to validate the Standard Model and determine its fundamental parameters. The comparison of my results with data will enable more stringent test of models of New Physics.

Call for proposal

See other projects for this call


Esplanade Des Particules 1 Parcelle 11482 De Meyrin Batiment Cadastral 1046
1211 Geneve 23

See on map

Activity type
Research Organisations
Administrative Contact
Cécile Granier (Ms.)
EU contribution
€ 268 685,60