Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Bridging length and timescales of Electronic processes in organic SemiconducTor devices

Objective

"The development of the next generation of efficient opto-electronic devices based on organic semiconductors relies on the capability of theoretical modelling to shed light onto microscopic mechanisms underneath and provide a rational approach to materials and devices design. To answer this need, we propose the realization of a general multiscale modelling platform, capable to cover and bridge key aspects at core of device functioning, from supramolecular organization to energetics and time evolution of charge and energy carriers.
This novel modelling platform will be applied to obtain crucial insights on exciton dissociation and charge separation in bulk heterojunctions, charge transport in doped materials and multiple exciton generation through fission of singlet excitons. A general and efficient computational protocol for the collection of essential information with state-of-the-art and original theoretical tools at the different levels of resolution, and its injection into effective model Hamiltonians, will endow us with an unprecedented comprehensive and realistic picture of electronic structure and dynamics in heterogeneous and disordered mesoscopic systems. Fully accounting for charge and energy carrier delocalization, intermolecular hybridization and quantum superposition of Frenkel and charge-transfer excitations, this approach has the potential to disclose molecular and supramolecular requirements for an efficient ultra-fast multiplication of excitations and their subsequent splitting through hot charge-transfer states, or for the tuning of semiconductor properties by chemical doping.
This research will be undertaken in collaboration with leading experimental and theoretical groups, levering the BEST ambitious profile, and strengthening the European excellence in organic electronics research. The involvement in Host-industry partnerships will extend the BEST outreach towards applications, reinforcing the leadership of European high-tech industry."

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2013-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

UNIVERSITE DE MONS
EU contribution
€ 169 800,00
Address
PLACE DU PARC 20
7000 Mons
Belgium

See on map

Region
Région wallonne Prov. Hainaut Arr. Mons
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0