Skip to main content
Web oficial de la Unión EuropeaWeb oficial de la UE
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Contenido archivado el 2024-06-18

Keeping ready for battle: understanding fundamental mechanisms of establishment and maintenance of epigenetic marks underlying abiotic stress memory in plants

Objetivo

Drought and salt stress threaten crop production worldwide. Evidence from the field that pre-exposure of plants to transient mild stress (priming) enhances their tolerance to subsequent harsher stress indicates that plants maintain a ‘memory’ of environmental events that allows them to respond more efficiently to subsequent stress. However, systematic studies on the molecular processes underlying abiotic stress priming are scarce. The proposed project takes advantage of an effective salt-priming protocol for the model plant Arabidopsis thaliana developed by the host group, and builds on recently published
evidence from the host that epigenetic marks consisting of a decrease of tri-methylated lysine 27 in histone 3 (H3K27me3) underlie somatic stress memory of the primed plants. The work will focus on elucidating the molecular mechanisms for the establishment, maintenance and fading of the epigenetic memory and the role it plays for improved stress tolerance. The main objectives are the following: (1) testing the role of REF6 (a plant histone demethylase), SWI3B (a component of a chromatin-remodeling complex) and nucleosome repositioning in priming-induced H3K27me3 loss, (2) investigating the mechanisms of H3K27me3 spreading after priming, (3) assessing the effect of repeated salt exposure on H3K27me3, and (4) detailed analysis of cell-type specific H3K27me3 changes in the HKT1 gene, encoding a sodium transporter with a crucial role in plant salt tolerance. The research will use a range of modern technologies including chromatin immunoprecipitation (ChIP), next-generation (Illumina) sequencing, quantitative PCR, nucleosome mapping and the use of INTACT technology for cell-type specific ChIP, combined with refined data analysis to obtain results at a high spatio-temporal/molecular resolution. Advanced training in cutting-edge technologies, collaborations with other laboratories and significant project outcomes will greatly contribute to develop the candidate’s career.

Ámbito científico

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.

Convocatoria de propuestas

FP7-PEOPLE-2013-IEF
Consulte otros proyectos de esta convocatoria

Coordinador

UNIVERSITY OF GLASGOW
Aportación de la UE
€ 231 283,20
Dirección
UNIVERSITY AVENUE
G12 8QQ Glasgow
Reino Unido

Ver en el mapa

Tipo de actividad
Higher or Secondary Education Establishments
Contacto administrativo
Joe Galloway (Mr.)
Enlaces
Coste total
Sin datos