Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-06-18

A biologically inspired algorithm for training deep neural networks

Objetivo

In machine learning, deep neural networks are powerful computer-based models that use layers of computational units. Current commercial applications for these models include a wide array of software tasks such as image classification, identification of potential drugs, market predictions and speech recognition. Network models must be ‘trained’ using data, and their success hinges critically on the quality of the learning algorithm that is employed. We have recently discovered a novel, biologically inspired algorithm for training deep neural networks that is simpler to implement, more flexible and finds better solutions than existing techniques on bench-mark tests. Thus, our system has the potential to improve performance widely across the many fields that make use of machine learning in software tasks. Furthermore, the simplicity and flexibility of our method means that it could be more easily exploited in hardware devices such as mobile phones and cameras. The central aim of this proposal is to move our new algorithm to a stage where it is ready for commercialization. To do this we plan to accomplish two main areas of work. First, we will research the optimal way to employ our algorithm, establish its performance on a comprehensive set of industry-accepted bench-mark tasks, and compile our research into a manuscript for publication in a leading machine learning journal. Second, we will secure any arising intellectual property in line with the preliminary US patent application that we have already filed, assess application of the algorithm to the different commercial sectors identified through market research, and generate commercial interest in the technology through targeted marketing to relevant companies. This plan of work will confirm the innovation potential of our new algorithm and will establish the technical and commercial feasibility of our discovery.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

ERC-2013-PoC
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

CSA-SA(POC) - Supporting action (Proof of Concept)

Institución de acogida

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Aportación de la UE
€ 146 761,00
Dirección
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
Reino Unido

Ver en el mapa

Región
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos

Beneficiarios (1)

Mi folleto 0 0