Objective
The DIPSAP project is targeted at providing a European-sourced high-performance programmable Digital Signal Processor (DSP) which is designed to meet the stringent demands of the space environment, thereby placing Europe in the vanguard of an open world market. However, the scope of exploitation of the project results is extended into much wider markets by enhancing the DSP with additional functionality and interfaces to provide systems suitable for applications specific processing solutions in, for example, automotive and robotics industries. By performing the design activities under the umbrella of OMI, standards are established which will allow future developments in microelectronics to be incorporated without the need for expensive redesign stages.
A clear requirement and unsatisfied market for digital signal processor (DSP) based units has been identified for the application areas being investigated. Although the individual requirements for specific applications are diverse, a common requirement for a 32 bit floating point DSP device has been identified. The requirements have been grouped into 2 classes corresponding to moderate (less than 20 Mflops), mono DSP and high (greater than 20 Mflops) multi DSP processing performance. Such a DSP device would also fulfil many of the requirements of neighbouring application areas (aeronautic, nuclear, etc).
The network system architecture and corresponding DSP processing elements are the presently preferred multiprocessor solution. Communication links should be based on those being developed within the OMI/HIC project. A combination with a reduced instruction set computer (RISC) processor such as the SMILE/SPARC processor is highly desirable. A good basis tool to support simulation of data flow dominated processing architectures is the DSP Station.
The most attractive (technical, technological, commercial) candidate digital signal processor has been identified. Licensing proposals are being evaluated. It is important that the DSP device be available in the different technologies suited to the specific requirements and characteristics of the final markets (space, industrial, automotive): low volume, high price and radiation hardened devices for space, and high quantity low price devices for industrial/automotive applications. Similar technology independence requirements must be placed on any other OMI/Eurocell cells needed for a complete development.
The DIPSAP-I project represents the feasibility phase of a longer-term project. Under the feasibility phase, major technical (performance requirements, application constraints, interface requirements), production (component and process availability, software support, risks) and commercial (licensing, applications, market type and value) aspects are studied to assess the feasibility of developing a DSP for the above applications.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciencescomputer and information sciencessoftware
- natural sciencesphysical scienceselectromagnetism and electronicsmicroelectronics
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringrobotics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Topic(s)
Data not availableCall for proposal
Data not availableFunding Scheme
Data not availableCoordinator
85521 OTTOBRUNN
Germany