Objective
FrakRisk further develops the knowledge base for understanding, preventing and mitigating the potential impact of the exploration and exploitation of shale gas reserves found throughout Europe. This will include international experience, state of the art process understanding, state of the art modelling techniques and the further development of fully accepted risk assessment tools for site screening, selection and management specifically for shale gas exploitation. FracRisk focuses on key knowledge gaps identified from the literature, research and industrial experience. Central to the project is the modelling of six exemplary scenarios selected to represent the highest risk environmental impact scenarios identified as generally of most concern. The modelling of the scenarios is directed by the aim to reduce the uncertainty and assess the risk of different events during shale gas exploration and exploitation. Using an iterative modelling and risk reduction approach, cost effective data density requirements to limit uncertainty will be evaluated. The modelled scenarios will be validated against existing data from several sites within the EU and in the USA. Effective monitoring procedures and applicable mitigation techniques will be determined and evaluated. Scientific recommendations will be formulated and legislative refinement suggested. Public concerns about the management of risk related to fracking operations will be addressed. A firm scientific basis and demonstrable data to validate recommendations will be provided. The technological readiness level from a number of multidisciplinary approaches and applications will be noticeably improved. FrakRisk will lead to a more focused, coherent and scientifically founded approach that can be useful to member states willing to enable and regulate the shale gas industry.
Fields of science
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- engineering and technologyenvironmental engineeringwater treatment processeswastewater treatment processes
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectrical engineeringpower engineeringelectric power generation
- engineering and technologyenvironmental engineeringenergy and fuelsfossil energycoal
- engineering and technologyenvironmental engineeringenergy and fuelsfossil energynatural gas
- natural sciencesmathematicsapplied mathematicsstatistics and probability
Programme(s)
Funding Scheme
RIA - Research and Innovation actionCoordinator
EH8 9YL Edinburgh
United Kingdom