Skip to main content
European Commission logo print header

Elucidation of the evolution of post-transcriptional regulation by characterizing the cnidarian microRNA pathway

Description du projet

Évolution des petits ARN chez les animaux anciens

Les petites molécules d’ARN forment une classe de molécules d’ARN non codantes comprenant environ 20 à 30 bases nucléiques qui sont impliquées dans divers processus cellulaires et physiologiques, y compris la régulation des gènes. Les micro-ARN constituent la classe de petits ARN la mieux étudiée chez les espèces bilatériennes telles que les insectes, les nématodes et les vertébrés. Financé par le Conseil européen de la recherche, le projet CNIDARIAMICRORNA étudie les petits micro-ARN d’espèces non bilatériennes telles que l’anémone de mer Nematostella vectensis, un parent des coraux et des méduses. Les résultats du projet révèlent que les micro-ARN de Nematostella ressemblent à ceux des plantes en ce qui concerne leur mode d’action. En s’appuyant sur des méthodes biochimiques et génétiques avancées, les chercheurs donneront un aperçu de la biogenèse et de l’action des petits ARN dans l’anémone de mer et mettront en lumière l’évolution et les formes anciennes de cette importante voie moléculaire.

Objectif

Over the past decade small RNAs such as microRNAs (miRNAs) and small interfering RNAs (siRNAs) have been shown to carry pivotal roles in post-transcriptional regulation and genome protection and to play an important part in various physiological processes in animals. miRNAs can be found in a very wide range of animals yet their functions were studied almost exclusively in members of the Bilateria such as insects, nematodes and vertebrates. Hence studying their function in representatives of non-bilaterian phyla such as Cnidaria (sea anemones, corals, hydras and jellyfish) is crucial for understanding the evolution of miRNAs in animals and can provide important insights into their roles in the ancient ancestor of Cnidaria and Bilateria. The sea anemone Nematostella vectensis is an excellent model for such a study since it can be grown in large numbers throughout its life cycle in the lab and because well-established genetic manipulation techniques are available for this species. Our preliminary results indicate that miRNAs in Nematostella frequently have a nearly perfect match to their messenger RNA (mRNA) targets, resulting in cleavage of the target. This mode of action is common for plant miRNAs, but is very rare in Bilateria. This finding together with my recent discovery of a Nematostella homolog of HYL1, a protein involved in miRNA biogenesis in plants, raises the exciting possibility that the miRNA pathway existed in the common ancestor of plants and animals. Here I suggest to bring together an array of advanced biochemical and genetic methods such as gene knockdown, transgenesis, high throughput sequencing and immunoprecipitation in order to obtain - for the first time - a deep understanding of the biogenesis and mechanism of action of small RNAs in Cnidaria. This will provide a novel way to understand the evolution of this important molecular pathway and to evaluate its age and ancestral form.

Régime de financement

ERC-STG - Starting Grant

Institution d’accueil

THE HEBREW UNIVERSITY OF JERUSALEM
Contribution nette de l'UE
€ 1 499 587,00
Adresse
EDMOND J SAFRA CAMPUS GIVAT RAM
91904 Jerusalem
Israël

Voir sur la carte

Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 1 499 587,00

Bénéficiaires (1)