Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

New Thermodynamic for Frequency Conversion and Photovoltaics

Descripción del proyecto

Romper la barrera a la eficiencia de Shockley-Queisser en la energía fotovoltaica

El límite de Shockley-Queisser (SQ) constituye un problema persistente en la industria fotovoltaica, ya que fija la eficiencia máxima de las células fotovoltaicas de silicio en torno al 30 %. El límite se debe a dos factores: los fotones energéticos pierden la mayor parte de su energía en forma de calor durante la conversión y la energía fotovoltaica no puede aprovechar fotones por debajo de su banda prohibida. Sin embargo, el equipo del proyecto ThforPV, financiado por el Consejo Europeo de Investigación, propondrá una nueva solución para superar este problema. A través de la conversión ascendente impulsada por la entropía de fotones de baja energía, como la radiación térmica, se pretende elevar la eficiencia potencial por encima del límite de SQ, lo cual podría suponer una innovación revolucionaria en el ámbito de la energía fotovoltaica. Los resultados experimentales muestran una conversión ascendente de 10,6 micrómetros de excitación a 1 micrómetro con una eficiencia interna del 27 % y una eficiencia total del 10 %.

Objetivo

"The Shockley Queisser (SQ) limits the efficiency of single junction photovoltaic (PV) cells and sets the maximum efficiency for Si PV at about 30%. This is because of two constraints: i. The energy PV generates at each conversion event is set by its bandgap, irrespective of the photon’s energy. Thus, energetic photons lose most of their energy to heat. ii. PV cannot harness photons at lower energy than its bandgap. Therefore, splitting energetic photons, and fusing two photons each below the Si bandgap to generate one higher-energy photon that match the PV, push the potential efficiency above the Shockley Queisser limit. Nonlinear optics (NLO) offers efficient frequency conversion, yet it is inefficient at the intensity and the coherence level of solar and thermal radiation.
Here I propose new thermodynamic concepts for frequency conversion of partially incoherent light aiming to overcome the SQ limit for single junction PVs. Specifically, I propose entropy driven up-conversion of low energy photons such as in thermal radiation to emission that matches Si PV cell. This concept is based on coupling ""hot phonons"" to Near-IR emitters, while the bulk remains at low temperature. As preliminary results we experimentally demonstrate entropy-driven ten-fold up-conversion of 10.6m excitation to 1m at internal efficiency of 27% and total efficiency of 10%. This is more efficient by orders of magnitude from any prior art, and opens the way for efficient up-conversion of thermal radiation.
We continue by applying similar thermodynamic ideas for harvesting the otherwise lost thermalization in single junction PVs and present the concept of ""optical refrigeration for ultra-efficient PV"" with theoretical efficiencies as high as 69%. We support the theory by experimental validation, showing enhancement in photon energy of 107% and orders of magnitude enhancement in the number of accessible photons for high-bandgap PV. This opens the way for disruptive innovation in photovoltaics"

Régimen de financiación

ERC-STG - Starting Grant

Institución de acogida

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Aportación neta de la UEn
€ 1 500 000,00
Dirección
SENATE BUILDING TECHNION CITY
32000 Haifa
Israel

Ver en el mapa

Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 1 500 000,00

Beneficiarios (1)