Skip to main content

Advanced Bioderived and Biocompatible Lasers

Objective

Naturally occurring optical phenomena attract great attention and transform our ability to study biological processes, with “the discovery and development of the green fluorescent protein (GFP)” (Nobel Prize in Chemistry 2008) being a particularly successful example. Although found only in very few species in nature, most organisms can be genetically programmed to produce the brightly fluorescent GFP molecules. Combined with modern fluorescence detection schemes, this has led to entirely new ways of monitoring biological processes. The applicant now demonstrated a biological laser – a completely novel, living source of coherent light based on a single biological cell bioengineered to produce GFP. Such a laser is intrinsically biocompatible, thus offering unique properties not shared by any existing laser. However, the physical processes involved in lasing from GFP remain poorly understood and so far biological lasers rely on bulky, impractical external resonators for optical feedback. Within this project, the applicant and his team will develop for the first time an understanding of stimulated emission in GFP and related proteins and create an unprecedented stand-alone single-cell biolaser based on intracellular optical feedback. These lasers will be deployed as microscopic and biocompatible imaging probes, thus opening in vivo microscopy to dense wavelength-multiplexing and enabling unmatched sensing of biomolecules and mechanical pressure. The evolutionarily evolved nano-structure of GFP will also enable novel ways of studying strong light-matter coupling and will bio-inspire advances of synthetic emitters. The proposed project is inter-disciplinary by its very nature, bridging photonics, genetic engineering and material science. The applicant’s previous pioneering work and synergies with work on other lasers developed at the applicant’s host institution provide an exclusive competitive edge. ERC support would transform this into a truly novel field of research.

Field of science

  • /natural sciences/biological sciences/biochemistry/biomolecules/proteins
  • /natural sciences/physical sciences/optics/laser physics
  • /medical and health sciences/medical biotechnology/genetic engineering

Call for proposal

ERC-2014-STG
See other projects for this call

Funding Scheme

ERC-STG - Starting Grant

Host institution

THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS
Address
North Street 66 College Gate
KY16 9AJ St Andrews
United Kingdom
Activity type
Higher or Secondary Education Establishments
EU contribution
€ 1 499 875

Beneficiaries (1)

THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS
United Kingdom
EU contribution
€ 1 499 875
Address
North Street 66 College Gate
KY16 9AJ St Andrews
Activity type
Higher or Secondary Education Establishments