Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Sparse Signal Processing Technologies for HyperSpectral Imaging Systems

CORDIS proporciona enlaces a los documentos públicos y las publicaciones de los proyectos de los programas marco HORIZONTE.

Los enlaces a los documentos y las publicaciones de los proyectos del Séptimo Programa Marco, así como los enlaces a algunos tipos de resultados específicos, como conjuntos de datos y «software», se obtienen dinámicamente de OpenAIRE .

Resultado final

Space market analysis (se abrirá en una nueva ventana)

This deliverable will be focused on ways to promote the technologies developed in PHySIS in future hyperspectral imaging space missions by presenting the outcomes of the research to appropriate associations and commissions including the European Remote Sensing Companies Association and the European panel of space SMEs Association. Exploitation plans drafted by the consortium will include a review on the position of the project with respect to specific market and preliminary exploitation strategies for both individual modules and end-to-end system design.

Report on the analysis and evaluation of video SSI architectures (se abrirá en una nueva ventana)

A report on the evaluation of various HSI technologies against native spectral, spatial resolution, compactness and cost, focusing especially on technologies capable of generating hyperspectral video. Strengths and weakness of each of the approaches will be highlighted. This deliverable will provide valuable input to the rest of the project activities (compression, spatial/spectral resolution enhancement) that will result in high performance and compact snapshot video systems.

User manual and demonstration procedures (se abrirá en una nueva ventana)

A report on the demonstration activities providing the necessary support to the WP 8 for the dissemination activities to the potential customer and any users. The deliverable will include a storyboard to use the system in the demonstration activities providing any input products and steps to follow to demonstrate the functionalities of the overall system.

Scenario descriptions and system requirements (v2) (se abrirá en una nueva ventana)

Develop the details of the targeted scenarios, the associated requirements, and the system architecture. This deliverable will be the updated version of the initial release, which appeared in M3.

Data management plan (se abrirá en una nueva ventana)

An organized strategy about the exploitation, sharing, access, verification, and reuse of the PHySIS produced hyperspectral data.

Report on the robust recovery of hyperspectral data (se abrirá en una nueva ventana)

Report on the design of hyperspectral data recovery methods when the instrumental noise to be modeled is typical of optical systems. This includes shot noise as well as outliers or more generally sparse noise. In this task, the sparsity of the hyperspectral data to be retrieved will be enforced using standard signal representations such as wavelets. We will make use of recent advances in optimization - and more precisely proximal calculus - for the design of the recovery algorithm.

Risk assessment procedure (se abrirá en una nueva ventana)

Description of the establishment of necessary procedures for risk assessment. Important risks will be monitored and mitigation actions will be implemented where relevant.

Report on efficient hyperspectral image compression (se abrirá en una nueva ventana)

Report on novel approaches in hyperspectral image compression, leveraging the computational power of sparse and low rank representations. The proposed compression algorithm will be evaluated both in terms of compression performance as well as computational complexity. More specifically, we will investigate (i) the spatio-temporal characteristics of hyperspectral images, (ii) methods for progressive spatio-temporal multiplexing of hyperspectral cubes, (iii) channel encoding of multiplexed cubes for efficient and robust transmission and (iv) reconstruction of the hyperspectral cubes from the received messages.

Report on the application scenarios (se abrirá en una nueva ventana)

Specify application scenarios and describe the operational tasks that cannot be addressed with classical single-band visible or infrared cameras. Study and explain how the operational tasks can be tackled by hyperspectral systems. Emphasize the hyperspectral design parameters that will play an important role in the overall performance of the system.

Annual report on dissemination activities (Y1) (se abrirá en una nueva ventana)

A report on the actual implemented ways of communicating the results of the various PHYSIS WPs to the research community and to different special interest groups during Year 1.

Terrestrial markets analysis (se abrirá en una nueva ventana)

This deliverable will consider the opportunities for the exploitation of PHySIS findings in terrestrial applications including security, food, agriculture and archeology.

Annual report on dissemination activities (Y2) (se abrirá en una nueva ventana)

A report on the actual implemented ways of communicating the results of the various PHYSIS WPs to the research community and to different special interest groups during Year 2.

Report on unmixing algorithms for hyperspectral data (se abrirá en una nueva ventana)

A report on the development of new hyperspectral unmixing algorithms that go beyond the state-of-the-art in two respects. First, the inherent spatial resolution existing very often in hyperspectral images will be exploited and properly incorporated in the devised schemes. Second, various nonlinear mixing models will be investigated and unmixing algorithms adjusted to these models will be sought. The compressive sensing and Bayesian statistical frameworks will be used as the basis of our developments, enabling the design of sparsity aware statistical algorithms addressing the previously mentioned issues.

Scenario descriptions and system requirements (v1) (se abrirá en una nueva ventana)

Develop the details of the targeted scenarios, the associated requirements, and the system architecture. The detailed scenario descriptions and the corresponding requirements will be the basis for the work done in the WPs 3-7 and will determine many system requirements such as imaging modalities, type and spatial-spectral-temporal density of measurement data depending on the specific scenario, spatial extension to be monitored, necessary co-operative tasks, and overall modular architecture of the system. The initial release of this deliverable will happen in M3.

Publicaciones

Deep Convolutional Neural Networks for the Classification of Snapshot Mosaic Hyperspectral Imagery

Autores: K. Fotiadou, G. Tsagkatakis, P. Tsakalides
Publicado en: IS&T International Symposium on Electronic Imaging: Computational Imaging, 2017, 2017
Editor: The Society for Imaging Science and Technology

Detecting hyperplane clusters with adaptive possibilistic clustering (se abrirá en una nueva ventana)

Autores: K. D. Koutroumbas, S. D. Xenaki, A. A. Rontogiannis
Publicado en: Proceedings of the 9th Hellenic Conference on Artificial Intelligence - SETN '16, 2016, Página(s) 1-7, ISBN 9781-450337342
Editor: ACM Press
DOI: 10.1145/2903220.2903236

A Self-Similar and Sparse Approach for Spectral Mosaic Snapshot Recovery

Autores: G. Tsagkatakis and P. Tsakalides
Publicado en: Proc. 2016 IEEE International Conference on Imaging Systems and Techniques (IST 2016), 2016
Editor: IEEE

Lightweight Onboard Hyperspectral Compression and Recovery by Matrix Completion

Autores: G. Tsagkatakis, L. Amoruso, D. Sykas, C. Abbattista, and P. Tsakalides
Publicado en: Proc. 5th International Workshop on On-Board Payload Data Compression (OBPDC 2016), 2016
Editor: ESA

Joint Deconvolution and Blind Source Separation of Hyperspectral Data Using Sparsity

Autores: M. Jiang, J.-L. Starck, J. Bobin M. Jiang, J.-L. Starck, J. Bobin, “Joint Deconvolution and Blind Source Separation of Hyperspectral Data Using Sparsity”, in SIAM Conference on Imaging Science, Albuquerque, New Mexico, May 23-26, 2016
Publicado en: SIAM Conference on Imaging Science, 2016
Editor: SIAM

Deep Feature Learning for Hyperspectral Image Classification and Land Cover Estimation

Autores: G. Tsagkatakis and P. Tsakalides
Publicado en: Living Planet Symposium, Edición 740, 2016
Editor: ESA

Spectral Super-Resolution for Hyperspectral Images via Sparse Representations

Autores: Konstantina Fotiadou, Grigorios Tsagkatakis and Panagiotis Tsakalides
Publicado en: Living Planet Symposium, Edición 740, 2016
Editor: ESA

Sparse BSS in the presence of outliers

Autores: C. Cécile, J. Bobin, and J. Rapin
Publicado en: SPARS, 2015
Editor: University of Cambridge

Compressed sensing and radio interferometry (se abrirá en una nueva ventana)

Autores: M. Jiang, J. N. Girard, J.-L. Starck, S. Corbel, C. Tasse
Publicado en: 2015 23rd European Signal Processing Conference (EUSIPCO), 2015, Página(s) 1646-1650, ISBN 978-0-9928-6263-3
Editor: IEEE
DOI: 10.1109/EUSIPCO.2015.7362663

Non-negative Matrix Completion for the Enhancement of Snapshot Mosaic Multispectral Imagery

Autores: G. Tsagkatakis, B. Geelen, M. Jayapala, P. Tsakalides
Publicado en: IS&T International Symposium on Electronic Imaging: Image Sensors and Imaging Systems, 2016
Editor: IST

Spectral Resolution Enhancement of Hyperspectral Images via Sparse Representations

Autores: K. Fotiadou, G. Tsagkatakis, P. Tsakalides
Publicado en: IS&T International Symposium on Electronic Imaging: Computational Imaging, 2016
Editor: IST

Compressed Hyperspectral Sensing

Autores: G. Tsagkatakis and P. Tsakalides
Publicado en: Proc. 2015 IS&T/SPIE Electronic Imaging Conference, Image Sensors and Imaging Systems, 2015
Editor: IST/SPIE

Sparsity and inverse problems in astrophysics (se abrirá en una nueva ventana)

Autores: Jean-Luc Starck
Publicado en: Journal of Physics: Conference Series, Edición 699, 2016, Página(s) 012010, ISSN 1742-6588
Editor: Institute of Physics
DOI: 10.1088/1742-6596/699/1/012010

Online sparse and low-rank subspace learning from incomplete data: A Bayesian view (se abrirá en una nueva ventana)

Autores: Paris V. Giampouras, Athanasios A. Rontogiannis, Konstantinos E. Themelis, Konstantinos D. Koutroumbas
Publicado en: Signal Processing, Edición 137, 2017, Página(s) 199-212, ISSN 0165-1684
Editor: Elsevier BV
DOI: 10.1016/j.sigpro.2017.02.003

Constraint matrix factorization for space variant PSFs field restoration (se abrirá en una nueva ventana)

Autores: F Ngolè, J-L Starck, K Okumura, J Amiaux, P Hudelot
Publicado en: Inverse Problems, Edición 32/12, 2016, Página(s) 124001, ISSN 0266-5611
Editor: Institute of Physics Publishing
DOI: 10.1088/0266-5611/32/12/124001

Multi-band morpho-Spectral Component Analysis Deblending Tool (MuSCADeT): Deblending colourful objects (se abrirá en una nueva ventana)

Autores: R. Joseph, F. Courbin, J.-L. Starck
Publicado en: Astronomy & Astrophysics, Edición 589, 2016, Página(s) A2, ISSN 0004-6361
Editor: Springer Verlag
DOI: 10.1051/0004-6361/201527923

Sparsity-Aware Possibilistic Clustering Algorithms (se abrirá en una nueva ventana)

Autores: Spyridoula D. Xenaki, Konstantinos D. Koutroumbas, Athanasios A. Rontogiannis
Publicado en: IEEE Transactions on Fuzzy Systems, Edición 24/6, 2016, Página(s) 1611-1626, ISSN 1063-6706
Editor: Institute of Electrical and Electronics Engineers
DOI: 10.1109/TFUZZ.2016.2543752

Simultaneously Sparse and Low-Rank Abundance Matrix Estimation for Hyperspectral Image Unmixing (se abrirá en una nueva ventana)

Autores: Paris V. Giampouras, Konstantinos E. Themelis, Athanasios A. Rontogiannis, Konstantinos D. Koutroumbas
Publicado en: IEEE Transactions on Geoscience and Remote Sensing, Edición 54/8, 2016, Página(s) 4775-4789, ISSN 0196-2892
Editor: Institute of Electrical and Electronics Engineers
DOI: 10.1109/TGRS.2016.2551327

Variational Bayes Group Sparse Time-Adaptive Parameter Estimation With Either Known or Unknown Sparsity Pattern (se abrirá en una nueva ventana)

Autores: Konstantinos E. Themelis, Athanasios A. Rontogiannis, Konstantinos D. Koutroumbas
Publicado en: IEEE Transactions on Signal Processing, Edición 64/12, 2016, Página(s) 3194-3206, ISSN 1053-587X
Editor: Institute of Electrical and Electronics Engineers
DOI: 10.1109/TSP.2016.2543204

Characterization of VNIR Hyperspectral Sensors with Monolithically Integrated Optical Filters (se abrirá en una nueva ventana)

Autores: Prashant Agrawal, Klaas Tack, Bert Geelen, Bart Masschelein, Pablo Mateo Aranda Moran, Andy Lambrechts, Murali Jayapala
Publicado en: Electronic Imaging, Edición 2016/12, 2016, Página(s) 1-7, ISSN 2470-1173
Editor: IST
DOI: 10.2352/ISSN.2470-1173.2016.12.IMSE-280

Land Classification Using Remotely Sensed Data: Going Multilabel (se abrirá en una nueva ventana)

Autores: Konstantinos Karalas, Grigorios Tsagkatakis, Michael Zervakis, Panagiotis Tsakalides
Publicado en: IEEE Transactions on Geoscience and Remote Sensing, Edición 54/6, 2016, Página(s) 3548-3563, ISSN 0196-2892
Editor: Institute of Electrical and Electronics Engineers
DOI: 10.1109/TGRS.2016.2520203

Joint Multichannel Deconvolution and Blind Source Separation

Autores: M. Jiang, J. Bobin and J.-L. Starck
Publicado en: SIAM Journal on Imaging Sciences, 2017, ISSN 1936-4954
Editor: Society for Industrial and Applied Mathematics

Space variant deconvolution of galaxy survey images (se abrirá en una nueva ventana)

Autores: S. Farrens, F. M. Ngol? Mboula, J.-L. Starck
Publicado en: Astronomy & Astrophysics, Edición 601, 2017, Página(s) A66, ISSN 0004-6361
Editor: Springer Verlag
DOI: 10.1051/0004-6361/201629709

Spectral Unmixing-Based Clustering of High-Spatial Resolution Hyperspectral Imagery (se abrirá en una nueva ventana)

Autores: Eleftheria A. Mylona, Olga A. Sykioti, Konstantinos D. Koutroumbas, Athanasios A. Rontogiannis
Publicado en: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, Página(s) 1-11, ISSN 1939-1404
Editor: Institute of Electrical and Electronics Engineers
DOI: 10.1109/JSTARS.2017.2687703

PSFs field learning based on Optimal Transport distances

Autores: F.M. Ngolè Mboula and J.-L. Starck
Publicado en: SIAM Journal Imaging Science, 2017, ISSN 1936-4954
Editor: Society for Industrial and Applied Mathematics

Computational Snapshot Spectral Imaging

Autores: Grigorios Tsagkatakis and Panagiotis Tsakalides
Publicado en: ERCIM News, Edición 108, 2017, Página(s) 39
Editor: ERCIM

Buscando datos de OpenAIRE...

Se ha producido un error en la búsqueda de datos de OpenAIRE

No hay resultados disponibles

Mi folleto 0 0