Objective
Prime objective of the Sharc25 project is to develop super-high efficiency Cu(In,Ga)Se2 (CIGS) solar cells for next generation of cost-beneficial solar module technology with the world leading expertise establishing the new benchmarks of global excellence.
The project partners ZSW and EMPA hold the current CIGS solar cell efficiency world records of 21.7% on glass and 20.4% on polymer film, achieved by using high (~650°C) and low (~450°C) temperature CIGS deposition, respectively. Both have developed new processing concepts which open new prospects for further breakthroughs leading to paradigm shift for increased performance of solar cells approaching to the practically achievable theoretical limits. In this way the costs for industrial solar module production < 0.35€/Wp and installed systems < 0.60€/Wp can be achieved, along with a reduced Capex < 0.75€/Wp for factories of >100 MW production capacity, with further scopes for cost reductions through production ramp-up.
In this project the performance of single junction CIGS solar cells will be pushed from ~21% towards 25% by a consortium with multidisciplinary expertise. The key limiting factors in state-of-the-art CIGS solar cells are the non-radiative recombination and light absorption losses. Novel concepts will overcome major recombination losses: combinations of increased carrier life time in CIGS with emitter point contacts, engineered grain boundaries for active carrier collection, shift of absorber energy bandgap, and bandgap grading for increased tolerance of potential fluctuations. Innovative approaches will be applied for light management to increase the optical path length in the CIGS absorber and combine novel emitter, front contact, and anti-reflection concepts for higher photon injection into the absorber. Concepts of enhanced cell efficiency will be applied for achieving sub-module efficiencies of >20% and industrial implementation strategies will be proposed for the benefit of European industries.
Fields of science
- natural scienceschemical sciencesinorganic chemistryalkali metals
- natural scienceschemical sciencesinorganic chemistrytransition metals
- engineering and technologymaterials engineering
- engineering and technologyenvironmental engineeringenergy and fuelsrenewable energysolar energyphotovoltaic
- natural sciencesphysical sciencestheoretical physicsparticle physicsphotons
Programme(s)
Call for proposal
H2020-LCE-2014-1
See other projects for this call
Funding Scheme
RIA - Research and Innovation actionCoordinator
70563 Stuttgart
Germany
See on map
Participants (10)
8600 Dubendorf
See on map
4365 Esch-sur-alzette
See on map
76821 Mont Saint Aignan Cedex
See on map
43100 Parma
See on map
3001 Leuven
See on map
14109 Berlin
See on map
4715-330 Braga
See on map
02150 Espoo
See on map
8155 Niederhasli
See on map
74523 Schwabisch Hall
See on map